1. Scope
This reference specification applies to LQM18JN_00 series, Chip Coil (Chip Inductors).

2. Part Numbering

<table>
<thead>
<tr>
<th>(ex)</th>
<th>LQ</th>
<th>M</th>
<th>18</th>
<th>J</th>
<th>N</th>
<th>R16</th>
<th>J</th>
<th>0</th>
<th>0</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Product ID Structure</td>
<td>Dimension (L × W)</td>
<td>Applications and Category</td>
<td>Inductance</td>
<td>Tolerance</td>
<td>Dimension (T)</td>
<td>Other</td>
<td>Packaging</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Characteristic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* B: Bulk packing also available

3. Rating

- Operating Temperature Range: – 40°C to + 85°C
- Storage Temperature Range: – 40°C to + 85°C

<table>
<thead>
<tr>
<th>Customer Part Number</th>
<th>MURATA Part Number</th>
<th>Inductance [nH]</th>
<th>Q (min.)</th>
<th>DC resistance [ohm]</th>
<th>Self resonant frequency [MHz] (min.)</th>
<th>Rated current [mA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQM18JNR10J00D</td>
<td></td>
<td>100 +/-5%</td>
<td>8</td>
<td>0.41 +/-25%</td>
<td>200</td>
<td>650</td>
</tr>
<tr>
<td>LQM18JNR12J00D</td>
<td></td>
<td>120 +/-5%</td>
<td>8</td>
<td>0.47 +/-25%</td>
<td>150</td>
<td>610</td>
</tr>
<tr>
<td>LQM18JNR16J00D</td>
<td></td>
<td>160 +/-5%</td>
<td>8</td>
<td>0.60 +/-25%</td>
<td>100</td>
<td>550</td>
</tr>
</tbody>
</table>

4. Testing Conditions

(Unless otherwise specified) (In case of doubt)

- Temperature: Ordinary Temperature / 15°C to 35°C
- Temperature: 20°C ± 2°C
- Humidity: Ordinary Humidity / 25%(RH) to 85%(RH)
- Humidity: 60%(RH) to 70%(RH)
- Atmospheric Pressure: 86kPa to 106kPa

5. Appearance and Dimensions

- Unit Mass (Typical value): 0.004g

(in mm)
6. Electrical Performance

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Specification</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Inductance</td>
<td>Please refer to “3. Rating”.</td>
<td>Measuring Equipment: Keysight 4294A or equivalent (1mA) Measuring Frequency: 25MHz</td>
</tr>
<tr>
<td>6.2</td>
<td>Q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>DC Resistance</td>
<td></td>
<td>Measuring Equipment: Digital multi meter (TR6846 or equivalent)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DC resistance shall be measured after putting chip coil between the terminal 2 under the condition of opening between a and b. Every measurement The terminal 1 shall be shorted with a and b are shorted when changing chip coil.</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Self Resonant</td>
<td></td>
<td>Measuring Equipment: Keysight 4991A or equivalent (1mA)</td>
</tr>
<tr>
<td></td>
<td>Frequency (S.R.F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>Rated Current</td>
<td>Self temperature rise shall be limited to 40°C max.</td>
<td>The rated current is applied.</td>
</tr>
</tbody>
</table>

7. Mechanical Performance

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Specification</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Shear Test</td>
<td>Chip coil shall not be damaged after tested as follows.</td>
<td>Applied Direction Chip Coil Substrate Force: 10N Hold Duration: 5s Applied Direction: Parallel to PCB</td>
</tr>
<tr>
<td>7.2</td>
<td>Bending Test</td>
<td>Appearance: No damage</td>
<td>Substrate: Glass-epoxy substrate (100mm × 40mm × 1.0mm) Solder: Reflow Pressure jig Deflection: 2mm Hold Duration: 20s</td>
</tr>
</tbody>
</table>
8. Environmental Performance

It shall be soldered on the substrate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Specification</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Heat Resistance</td>
<td>Appearance: No damage</td>
<td>Temperature: 85°C±2°C Time: 1000h (+48h, -0h) Then measured after exposure in the room condition for 24h±2h.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inductance Change: within ±20%</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>Cold Resistance</td>
<td></td>
<td>Temperature: -40°C±2°C Time: 1000h (+48h, -0h) Then measured after exposure in the room condition for 24h±2h.</td>
</tr>
<tr>
<td>8.3</td>
<td>Humidity</td>
<td></td>
<td>Temperature: 70°C±2°C Humidity: 90%(RH) to 95%(RH) Time: 1000h (+48h, -0h) Then measured after exposure in the room condition for 24h±2h.</td>
</tr>
<tr>
<td>8.4</td>
<td>Temperature Cycle</td>
<td>Appearance: No damage</td>
<td>1 cycle: 1 step: -40°C±2°C / 30 min±3 min 2 step: Ordinary temp. / 10 min to 15 min 3 step: 85°C±2°C / 30 min to 3 min 4 step: Ordinary temp. / 10 min to 15 min Total of 100cycles Then measured after exposure in the room condition for 24h±2h.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inductance Change: within ±50%</td>
<td></td>
</tr>
</tbody>
</table>
9. Specification of Packaging

9.1 Appearance and Dimensions (8mm-wide paper tape)

![Diagram of packaging dimensions]

9.2 Specification of Taping

(1) Packing quantity (standard quantity)
 4,000 pcs. / reel

(2) Packing Method
 Products shall be packed in the cavity of the base tape and sealed by top tape and bottom tape.

(3) Sprocket hole
 The sprocket holes are to the right as the tape is pulled toward the user.

(4) Spliced point
 Base tape and Top tape has no spliced point.

(5) Missing components number
 Missing components number within 0.1% of the number per reel or 1 pc., whichever is greater, and
 are not continuous. The specified quantity per reel is kept.

9.3 Pull Strength

<table>
<thead>
<tr>
<th>Tape Type</th>
<th>Minimum Pull Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top tape</td>
<td>5N min.</td>
</tr>
<tr>
<td>Bottom tape</td>
<td></td>
</tr>
</tbody>
</table>

9.4 Peeling off force of top tape

<table>
<thead>
<tr>
<th>Speed of Peeling off</th>
<th>Peeling off force</th>
</tr>
</thead>
<tbody>
<tr>
<td>300mm/min</td>
<td>0.1 to 0.6N</td>
</tr>
</tbody>
</table>

(minimum value is typical)

9.5 Dimensions of Leader-tape, Trailer and Reel

There shall be leader-tape (top tape and empty tape) and trailer-tape (empty tape) as follows.

![Diagram of reel dimensions]

MURATA MFG.CO., LTD
9.6 Marking for reel

Customer part number, MURATA part number, Inspection number (+1), RoHS Marking (+2), Quantity etc.

+1) <Expression of Inspection No.>
 □□ OOOO ×××
 (1) Factory Code
 (2) Date
 First digit : Year / Last digit of year
 Second digit : Month / Jan. to Sep. → 1 to 9, Oct. to Dec. → O, N, D
 Third, Fourth digit : Day
 (3) Serial No.

+2) <Expression of RoHS Marking>
 ROHS – Y (△)
 (1) RoHS regulation conformity parts.
 (2) MURATA classification number

9.7 Marking for Outside package (corrugated paper box)

Customer name, Purchasing order number, Customer part number, MURATA part number, RoHS Marking (+2), Quantity, etc.

9.8. Specification of Outer Case

<table>
<thead>
<tr>
<th>Outer Case Dimensions (mm)</th>
<th>Standard Reel Quantity in Outer Case (Reel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 186</td>
<td>D 186</td>
</tr>
</tbody>
</table>

* Above Outer Case size is typical. It depends on a quantity of an order.

10. ! Caution

Limitation of Applications

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

(1) Aircraft equipment
(2) Aerospace equipment
(3) Undersea equipment
(4) Power plant control equipment
(5) Medical equipment
(6) Transportation equipment (vehicles, trains, ships, etc.)
(7) Traffic signal equipment
(8) Disaster prevention / crime prevention equipment
(9) Data-processing equipment
(10) Applications of similar complexity and/or reliability requirements to the applications listed in the above

11. Notice

This product is designed for solder mounting.
Please consult us in advance for applying other mounting method such as conductive adhesive.

11.1 Land pattern designing

<table>
<thead>
<tr>
<th>Soldering</th>
<th>a</th>
<th>b to c</th>
<th>(in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>0.7</td>
<td>2.2 to 2.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Reflow</td>
<td>1.8 to 2.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MURATA MFG.CO., LTD
11.2 Flux, Solder

- Use rosin-based flux.
 - Don’t use highly acidic flux with halide content exceeding 0.2(wt)% (chlorine conversion value).
 - Don’t use water-soluble flux.
- Use Sn-3.0Ag-0.5Cu solder.
- Standard thickness of solder paste: 100 μm to 150 μm.

11.3 Reflow soldering conditions

- Products can be applied to reflow soldering.
- Pre-heating should be in such a way that the temperature difference between solder and product surface is limited to 150°C max. Cooling into solvent after soldering also should be in such a way that the temperature difference is limited to 100°C max.
- Insufficient pre-heating may cause cracks on the product, resulting in the deterioration of products quality.
- Standard soldering profile and the limit soldering profile is as follows.
 The excessive limit soldering conditions may cause leaching of the electrode and/or resulting in the deterioration of product quality.

Reflow soldering profile

(1) Flow soldering profile

<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>Standard Profile</th>
<th>Limit Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-heating</td>
<td>150°C, 60s min.</td>
<td>150°C ~ 180°C, 90s ± 30s</td>
</tr>
<tr>
<td>Heating</td>
<td>250°C, 4s ~ 6s</td>
<td>265°C ± 3°C, 5s</td>
</tr>
<tr>
<td>Cycle of flow</td>
<td>2 times</td>
<td>2 times</td>
</tr>
</tbody>
</table>

(2) Reflow soldering profile

<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>Standard Profile</th>
<th>Limit Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-heating</td>
<td>150°C ~ 180°C, 90s ± 30s</td>
<td>150°C ~ 180°C, 90s ± 30s</td>
</tr>
<tr>
<td>Heating</td>
<td>above 220°C, 30s ~ 60s</td>
<td>above 230°C, 60s max.</td>
</tr>
<tr>
<td>Peak temperature</td>
<td>245°C ± 3°C</td>
<td>260°C ± 3°C</td>
</tr>
<tr>
<td>Cycle of reflow</td>
<td>2 times</td>
<td>2 times</td>
</tr>
</tbody>
</table>
11.4 Reworking with soldering iron

The following conditions must be strictly followed when using a soldering iron.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-heating</td>
<td>150°C, approx 1 minute</td>
</tr>
<tr>
<td>Tip temperature</td>
<td>350°C max.</td>
</tr>
<tr>
<td>Soldering iron output</td>
<td>80W max.</td>
</tr>
<tr>
<td>Tip diameter</td>
<td>φ3mm max.</td>
</tr>
<tr>
<td>Soldering time</td>
<td>3(±1, -0)s</td>
</tr>
<tr>
<td>Time</td>
<td>2 times max</td>
</tr>
</tbody>
</table>

Note: Do not directly touch the products with the tip of the soldering iron in order to prevent the crack on the products due to the thermal shock.

11.5 Solder Volume

- Solder shall be used not to be exceeded the upper limits as shown below.
- Accordingly increasing the solder volume, the mechanical stress to Chip is also increased. Exceeding solder volume may cause the failure of mechanical or electrical performance.

\[
\frac{1}{3}T \leq t \leq T \\
T: \text{ thickness of electrode}
\]

11.6 Product’s location

The following shall be considered when designing and laying out P.C.B.’s.

1. P.C.B. shall be designed so that products are not subject to the mechanical stress due to warping the board.

![Products direction](image)

Poor example → *Good example*

Products shall be located in the sideways direction (Length: a:b) to the mechanical stress.

2. Components location on P.C.B. separation.

It is effective to implement the following measures, to reduce stress in separating the board.

It is best to implement all of the following three measures; however, implement as many measures as possible to reduce stress.

<table>
<thead>
<tr>
<th>Contents of Measures</th>
<th>Stress Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Turn the mounting direction of the component parallel to the board separation surface.</td>
<td>A > D *1</td>
</tr>
<tr>
<td>(2) Add slits in the board separation part.</td>
<td>A > B</td>
</tr>
<tr>
<td>(3) Keep the mounting position of the component away from the board separation surface.</td>
<td>A > C</td>
</tr>
</tbody>
</table>

*1 A > D is valid when stress is added vertically to the perforation as with Hand Separation. If a Cutting Disc is used, stress will be diagonal to the PCB, therefore A > D is invalid.

3. Mounting Components Near Screw Holes

When a component is mounted near a screw hole, it may be affected by the board deflection that occurs during the tightening of the screw. Mount the component in a position as far away from the screw holes as possible.

![Screw Hole](image)
11.7 Cleaning Conditions

Products shall be cleaned on the following conditions.

(1) Cleaning temperature shall be limited to 60°C max. (40°C max for IPA.)
(2) Ultrasonic cleaning shall comply with the following conditions with avoiding the resonance phenomenon at the mounted products and P.C.B.
 - Power: 20 W/l max. Frequency: 28kHz to 40kHz Time: 5 min max.
(3) Cleaner
 1. Alcohol type cleaner
 - Isopropyl alcohol (IPA)
 2. Aqueous agent
 - PINE ALPHA ST-100S
(4) There shall be no residual flux and residual cleaner after cleaning. In the case of using aqueous agent, products shall be dried completely after rinse with de-ionized water in order to remove the cleaner.
(5) Other cleaning Please contact us.

11.8 Resin coating

The inductance value may change and/or it may affect on the product's performance due to high cure-stress of resin to be used for coating/molding products. So please pay your careful attention when you select resin.

In prior to use, please make the reliability evaluation with the product mounted in your application set.

11.9 Caution for use

There is possibility that the inductance value change due to magnetism. Don't use a magnet or a pair of tweezers with magnetism when chip coil are handled. (The tip of the tweezers should be molded with resin or pottery.)

11.10 Magnetic Saturation

When the excessive current over rated current is applied, the inductance value may change due to magnetism.

11.11 Handling of a substrate

After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting to the substrate when cropping the substrate, inserting and removing a connector from the substrate or tightening screw to the substrate.

Excessive mechanical stress may cause cracking in the product.

11.12 Storage and Handling Requirements

(1) Storage period
 Use the products within 6 months after delivered.
 Solderability should be checked if this period is exceeded.

(2) Storage conditions
 - Products should be stored in the warehouse on the following conditions.
 - Temperature: -10°C to 40°C
 - Humidity: 15% to 85% relative humidity
 - No rapid change on temperature and humidity
 - Don't keep products in corrosive gases such as sulfur, chlorine gas or acid, or it may cause oxidization of electrode, resulting in poor solderability.
 - Products should be stored on the palette for the prevention of the influence from humidity, dust and so on.
 - Products should be stored in the warehouse without heat shock, vibration, direct sunlight and so on.
 - Products should be stored under the airtight packaged condition.

(3) Handling Condition
 Care should be taken when transporting or handling product to avoid excessive vibration or mechanical shock.
12. **Note**

(1) Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.

(2) You are requested not to use our product deviating from the reference specifications.

(3) The contents of this reference specification are subject to change without advance notice.

 Please approve our product specifications or transact the approval sheet for product specifications before ordering.