1. Scope
This reference specification applies to LQW04AN_20 series, Chip coil (Chip Inductors).

2. Part Numbering

<table>
<thead>
<tr>
<th>Customer Part Number</th>
<th>MURATA Part Number</th>
<th>Inductance (nH)</th>
<th>Tolerance</th>
<th>Q (min.)</th>
<th>DC Resistance (Ω max.)</th>
<th>Self Resonant Frequency (GHz min.)</th>
<th>Rated Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQW04AN36NH20D</td>
<td>36 H:±3%</td>
<td>19</td>
<td>1.40</td>
<td>3.80</td>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQW04AN36NJ20D</td>
<td>36 J:±5%</td>
<td>19</td>
<td>1.40</td>
<td>3.80</td>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQW04AN39NH20D</td>
<td>39 H:±3%</td>
<td>19</td>
<td>1.50</td>
<td>3.50</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQW04AN39NJ20D</td>
<td>39 J:±5%</td>
<td>19</td>
<td>1.50</td>
<td>3.50</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQW04AN43NH20D</td>
<td>43 H:±3%</td>
<td>19</td>
<td>1.60</td>
<td>3.45</td>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQW04AN43NJ20D</td>
<td>43 J:±5%</td>
<td>19</td>
<td>1.60</td>
<td>3.45</td>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQW04AN47NH20D</td>
<td>47 H:±3%</td>
<td>19</td>
<td>1.68</td>
<td>3.40</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQW04AN47NJ20D</td>
<td>47 J:±5%</td>
<td>19</td>
<td>1.68</td>
<td>3.40</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQW04AN52NH20D</td>
<td>52 H:±3%</td>
<td>19</td>
<td>2.28</td>
<td>3.00</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQW04AN52NJ20D</td>
<td>52 J:±5%</td>
<td>19</td>
<td>2.28</td>
<td>3.00</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQW04AN56NH20D</td>
<td>56 H:±3%</td>
<td>19</td>
<td>2.28</td>
<td>3.00</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQW04AN56NJ20D</td>
<td>56 J:±5%</td>
<td>19</td>
<td>2.28</td>
<td>3.00</td>
<td>120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Rating
- Operating Temperature Range
(Product temperature * Self- temperature rise is included) \(-55°C to +125°C\)
- Storage Temperature Range. \(-55°C to +125°C\)

4. Testing Conditions
\{Unless otherwise specified\}
\begin{align*}
\text{Temperature} & : \text{Ordinary Temperature / 15°C to 35°C} \\
\text{Humidity} & : \text{Ordinary Humidity / 25\%(RH) to 85\%(RH)}
\end{align*}
\{In case of doubt\}
\begin{align*}
\text{Temperature} & : 20°C±2°C \\
\text{Humidity} & : 60\%(RH) to 70\%(RH) \\
\text{Atmospheric Pressure} & : 86kPa to 106 kPa
\end{align*}

5. Appearance and Dimensions

- **Unit Mass (Typical value)**
 0.0003g

\[\text{Dimensions (in mm)}\]

MURATA MFG.CO., LTD
6. Electrical Performance

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Specification</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Inductance</td>
<td>Meet item 3.</td>
<td>Measuring Equipment: KEYSIGHT E4991A or equivalent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Measuring Frequency: <Inductance> 100MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><Q></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Measuring Condition: Test signal level / about 0dBm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Electrode spaces / about 0.3mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Electrical length / 10mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Measuring Fixture: KEYSIGHT 16197A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Position coil under test as shown in below and contact coil with each terminal by adding weight.</td>
</tr>
</tbody>
</table>

Measuring Method: See the endnote.
<Electrical Performance : Measuring Method of Inductance/Q>

6.2	Q		
6.3	DC Resistance		Measuring Equipment: Digital multi meter
6.4	Self Resonant Frequency (S.R.F)		Measuring Equipment: KEYSIGHT 8720C or equivalent
6.5	Rated Current	Self temperature rise shall be limited to 20°C max.	The rated current is applied.

7. Mechanical Performance

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Specification</th>
<th>Test Method</th>
</tr>
</thead>
</table>
| 7.1 | Shear Test | No significant mechanical damage or no sign of electrode peeling off shall be observed | The product is soldered on a substrate for test.
Applying force: 2 N
Hold Duration: 5 s |

| 7.2 | Bending Test | The product is soldered on a substrate for test. | Test substrate: glass-epoxy substrate
(100 mm × 40 mm × 0.8 mm)
Pressurizing speed: 1.0 mm/s
Pressure jig: R230
Amount of bending: 2 mm
Hold Duration: 5 s |

MURATA MFG.CO., LTD
<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Specification</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Vibration</td>
<td>Appearance shall have no significant mechanical damage.</td>
<td>The product is soldered on a substrate for test. Oscillation frequency: 10 Hz to 2000 Hz to 10 Hz/20 min Amplitud: total amplitude of 3.0 mm or acceleration amplitude of 196 m/s², whichever is smaller Test time: 3 directions perpendicular to each other, 2 h for each direction (6 h in total)</td>
</tr>
<tr>
<td>7.4</td>
<td>Solderability</td>
<td>95% or more of the outer electrode shall be covered with new solder seamlessly. (Except for wire)</td>
<td>Flux: Ethanol solution of rosin 25(wt)% Pre-heating: 150°C/60 s Solder: Sn-3.0Ag-0.5Cu solder Solder Temperature: 245°C±3°C Immersion Time: 3 s</td>
</tr>
</tbody>
</table>

8. Environmental Performance

It shall be soldered on the substrate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Specification</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Heat Resistance</td>
<td>Appearance: No significant mechanical damage shall be observed. Inductance change rate: within ±10%</td>
<td>Temperature: 125±2°C Test time: 1000 h (+48 h, -0 h) Post-treatment: left for 4 hours to 48 hours at room temperature.</td>
</tr>
<tr>
<td>8.2</td>
<td>Cold Resistance</td>
<td></td>
<td>Temperature: -55°C±2°C Test time: 1000 h (+48 h, -0 h) Post-treatment: left for 4 hours to 48 hours at room temperature.</td>
</tr>
<tr>
<td>8.3</td>
<td>Humidity</td>
<td></td>
<td>Temperature: 40±2°C Humidity: 90 to 95%(RH) Test time: 1000 h (+48 h, -0 h) Post-treatment: left for 4 hours to 48 hours at room temperature.</td>
</tr>
<tr>
<td>8.4</td>
<td>Temperature Cycle</td>
<td></td>
<td>Single cycle conditions: Step 1: -55°C (+0°C, -3°C), 30 min (+3 min, -0 min) Step 2: ordinary temperature, 3 min max. Step 3: +125°C (+3°C, -0°C), 30 min (+3 min, -0 min) Step 4: ordinary temperature, 3 min max. Number of testing: 100 cycles Post-treatment: left for 4 hours to 48 hours at room temperature.</td>
</tr>
</tbody>
</table>
9. Specification of Packaging

9.1 Appearance and Dimensions of paper tape (8mm-wide)

9.2 Specification of Taping
(1) Packing quantity (standard quantity)
10,000 pcs. / reel
(2) Packing Method
Products shall be packed in the cavity of the base tape and sealed by Cover tape.
(3) Sprocket hole
The sprocket holes are to the right as the tape is pulled toward the user.
(4) Spliced point
Base tape and Cover tape has no spliced point.
(5) Missing components number
Missing components number within 0.1% of the number per reel or 1 pc., whichever is greater, and are not continuous. The Specified quantity per reel is kept.

9.3 Pull Strength

<table>
<thead>
<tr>
<th></th>
<th>Cover tape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull</td>
<td>5N min.</td>
</tr>
</tbody>
</table>

9.4 Peeling off force of cover tape

<table>
<thead>
<tr>
<th>Speed of Peeling off</th>
<th>300mm/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peeling off force</td>
<td>0.1N to 0.6N</td>
</tr>
<tr>
<td>(minimum value is typical)</td>
<td></td>
</tr>
</tbody>
</table>

9.5 Dimensions of Leader-tape, Trailer and Reel
There shall be leader-tape (cover tape and empty tape) and trailer-tape (empty tape) as follows.
9.6 Marking for reel
Customer part number, MURATA part number, Inspection number(+1), RoHS marking(+2), Quantity etc.

*1) <Expression of Inspection No.>
□□ OOOO XXX

(1) Factory Code
(2) Date
First digit : Year / Last digit of year
Second digit : Month / Jan. to Sep. \rightarrow 1 to 9, Oct. to Dec. \rightarrow O, N, D
Third, Fourth digit : Day

(3) Serial No.

*2) <Expression of RoHS marking>
ROHS – Y (△)

(1) RoHS regulation conformity
(2) MURATA classification number

9.7 Marking for Outside package (corrugated paper box)
Customer name, Purchasing order number, Customer part number, MURATA part number, RoHS Marking (+2), Quantity, etc.

9.8. Specification of Outer Case

Outer Case Dimensions (mm) Standard Reel Quantity in Outer Case (Reel)

<table>
<thead>
<tr>
<th>W</th>
<th>D</th>
<th>H</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>186</td>
<td>186</td>
<td>93</td>
<td>5</td>
</tr>
</tbody>
</table>

* Above Outer Case size is typical. It depends on a quantity of an order.

10. Caution
Limitation of Applications
Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

(1) Aircraft equipment
(2) Aerospace equipment
(3) Undersea equipment
(4) Power plant control equipment
(5) Medical equipment
(6) Transportation equipment (vehicles, trains, ships, etc.)
(7) Traffic signal equipment
(8) Disaster prevention / crime prevention equipment
(9) Data-processing equipment
(10) Applications of similar complexity and/or reliability requirements to the applications listed in the above

11. Notice
Products can only be soldered with reflow. This product is designed for solder mounting. Please consult us in advance for applying other mounting method such as conductive adhesive.

11.1 Land pattern designing
Recommended land patterns for reflow soldering are as follows:
These have been designed for Electric characteristics and solderability. Please follow the recommended patterns. Otherwise, their performance which includes electrical performance or solderability may be affected, or result in "position shift" in soldering process.
11.2 Flux, Solder
- Use rosin-based flux.
 Includes middle activator equivalent to 0.06(wt)\% to 0.1(wt) \% Chlorine.
 Don’t use highly acidic flux with halide content exceeding 0.2(wt) \% (chlorine conversion value).
 Don’t use water-soluble flux.
- Use Sn-3.0Ag-0.5Cu solder.
- Standard thickness of solder paste : 80 \(\mu \)m to 100 \(\mu \)m.

11.3 Reflow soldering conditions
- Pre-heating should be in such a way that the temperature difference between solder and product surface is limited to 150\(^\circ \)C max. Cooling into solvent after soldering also should be in such a way that the temperature difference is limited to 100\(^\circ \)C max.
 Insufficient pre-heating may cause cracks on the product, resulting in the deterioration of products quality.
- Standard soldering profile and the limit soldering profile is as follows.
 The excessive limit soldering conditions may cause leaching of the electrode and / or resulting in the deterioration of product quality.
- Reflow soldering profile

<table>
<thead>
<tr>
<th>Temp. ((^\circ)C)</th>
<th>Standard Profile</th>
<th>Limit Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-heating</td>
<td>150(^\circ)C~180(^\circ)C, 90s±30s</td>
<td>30s~60s above 220(^\circ)C, 60s max.</td>
</tr>
<tr>
<td>Heating</td>
<td>above 220(^\circ)C, 30s~60s</td>
<td>above 230(^\circ)C, 60s max.</td>
</tr>
<tr>
<td>Peak temperature</td>
<td>245(^\circ)C±3(^\circ)C</td>
<td>260(^\circ)C, 10s</td>
</tr>
<tr>
<td>Cycle of reflow</td>
<td>2 times</td>
<td>2 times</td>
</tr>
</tbody>
</table>

11.4 Solder Volume
- Solder shall be used not to be exceed the upper limits as shown below.
- Accordingly increasing the solder volume, the mechanical stress to Chip is also increased.
- Exceeding solder volume may cause the failure of mechanical or electrical performance.

11.5 Product’s location
The following shall be considered when designing and laying out P.C.B.’s.
(1) P.C.B. shall be designed so that products are not subject to the mechanical stress due to warping the board.

[Products direction] Products shall be located in the sideways direction (Length : \(a < b \)) to the mechanical stress.
(2) Components location on P.C.B. separation.
 It is effective to implement the following measures, to reduce stress in separating the board.
 It is best to implement all of the following three measures; however, implement as many measures
 as possible to reduce stress.

<table>
<thead>
<tr>
<th>Contents of Measures</th>
<th>Stress Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Turn the mounting direction of the component parallel to</td>
<td>A > D*1</td>
</tr>
<tr>
<td>the board separation surface.</td>
<td></td>
</tr>
<tr>
<td>(2) Add slits in the board separation part.</td>
<td>A > B</td>
</tr>
<tr>
<td>(3) Keep the mounting position of the component away from</td>
<td>A > C</td>
</tr>
<tr>
<td>the board separation surface.</td>
<td></td>
</tr>
</tbody>
</table>

*1 A > D is valid when stress is added vertically to the perforation as with Hand Separation.
If a Cutting Disc is used, stress will be diagonal to the PCB, therefore A > D is invalid.

(3) Mounting Components Near Screw Holes
 When a component is mounted near a screw hole,
 it may be affected by the board deflection that occurs
during the tightening of the screw. Mount the component
in a position as far away from the screw holes as possible.

11.6 Cleaning Conditions
 Products shall be cleaned on the following conditions.
 (1) Cleaning temperature shall be limited to 60°C max.(40°C max for IPA)
 (2) Ultrasonic cleaning shall comply with the following conditions with avoiding the resonance phenomenon at
 the mounted products and P.C.B.
 Power : 20 W / l max. Frequency : 28kHz to 40kHz Time : 5 min max.
 (3) Cleaner
 1. Alcohol type cleaner
 2. Aqueous agent
 PINE ALPHA ST-100S
 (4) There shall be no residual flux and residual cleaner after cleaning.
 In the case of using aqueous agent, products shall be dried completely after rinse with de-ionized water in
 order to remove the cleaner.
 (5) Other cleaning Please contact us.

11.7 Resin coating
 The inductance value may change due to high cure-stress of resin to be used for coating/molding products.
 An open circuit issue may occur by mechanical stress caused by the resin, amount/cured shape of resin, or operating
 condition etc. Some resin contains some impurities or chloride possible to generate chlorine by hydrolysis under some
 operating condition may cause corrosion of wire of coil, leading to open circuit.
 So, please pay your careful attention when you select resin in case of coating/molding the products with the resin.
 Prior to use the coating resin, please make sure no reliability issue is observed by evaluating products mounted on
 your board.

11.8 Caution for use
 - Sharp material such as a pair of tweezers or other material such as bristles of cleaning brush , shall not be touched
 to the winding portion to prevent the breaking of wire.
 - Mechanical shock should not be applied to the products mounted on the board to prevent the breaking of the core.

11.9 Notice of product handling at mounting
 In some mounting machines, when picking up components support pin pushes up the components from the bottom of base
 tape. In this case, please remove the support pin. The support pin may damage the components and break wire.
 In rare case , the laser recognition can not recognize this component. Please contact us when you use laser recognition.
 (There is no problem with the permeation and reflection type.)
11.10 Handling of a substrate
After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting to the substrate when cropping the substrate, inserting and removing a connector from the substrate or tightening screw to the substrate. Excessive mechanical stress may cause cracking in the product.

Bending Twisting

11.11 Storage and Handling Requirements
1. Storage period
 Use the products within 12 months after delivered. Solderability should be checked if this period is exceeded.

2. Storage conditions
 • Products should be stored in the warehouse on the following conditions.
 - Temperature: -10°C to 40°C
 - Humidity: 15% to 85% relative humidity (No rapid change on temperature and humidity)
 • Don’t keep products in corrosive gases such as sulfur, chlorine gas or acid, or it may cause oxidization of electrode, resulting in poor solderability.
 • Products should not be stored on bulk packaging condition to prevent the chipping of the core and the breaking of winding wire caused by the collision between the products.
 • Products should be stored on the palette for the prevention of the influence from humidity, dust and so on.
 • Products should be stored in the warehouse without heat shock, vibration, direct sunlight and so on.

3. Handling Condition
 Care should be taken when transporting or handling product to avoid excessive vibration or mechanical shock.

12. Note
1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
2. You are requested not to use our product deviating from the reference specifications.
3. The contents of this reference specification are subject to change without advance notice.
 Please approve our product specifications or transact the approval sheet for product specifications before ordering.
<Electrical Performance : Measuring Method of Inductance>

(1) Residual elements and stray elements of test fixture can be described by F-parameter shown in following.

\[
\begin{pmatrix}
V_2 \\
V_1
\end{pmatrix} =
\begin{pmatrix}
A & B \\
C & D
\end{pmatrix}
\begin{pmatrix}
I_1 \\
I_2
\end{pmatrix}
\]

(2) The impedance of chip coil \(Z_x \) and measured value \(Z_m \) can be described by input/output current/voltage.

\[
Z_m = \frac{V_1}{I_1}, \quad Z_x = \frac{V_2}{I_2}
\]

(3) Thus, the relation between \(Z_x \) and \(Z_m \) is following;

\[
Z_x = \alpha \frac{Z_m - \beta}{1 - Z_m \Gamma}
\]

where, \(\alpha = \frac{D}{A} = 1 \)

\[
\beta = \frac{B}{D} = Z_{sm} - (1 - Y_{om}) Z_{ss}
\]

\[
\Gamma = \frac{C}{A} = Y_{om}
\]

\[
\begin{cases}
Z_{sm} : \text{measured impedance of short chip} \\
Z_{ss} : \text{residual impedance of short chip (0.464nH)} \\
Y_{om} : \text{measured admittance when opening the fixture}
\end{cases}
\]

(4) \(L_x \) shall be calculated with the following equation.

\[
L_x = \frac{\text{Im}(Z_x)}{2\pi f}, \quad Q_x = \frac{\text{Im}(Z_x)}{\text{Re}(Z_x)}
\]

\(L_x \) : Inductance of chip coil

\(Q_x \) : Q of chip coil

\(f \) : Measuring frequency