

# Reference Specification

150°C Operation Leaded MLCC for Automotive (Powertrain/Safety) RHE Series

Product specifications in this catalog are as of Apr. 2024, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

## **⚠** CAUTION

#### 1. OPERATING VOLTAGE

Do not apply a voltage to the capacitor that exceeds the rated voltage as called out in the specifications.

- 1-1. Applied voltage between the terminals of a capacitor shall be less than or equal to the rated voltage.
- (1) When AC voltage is superimposed on DC voltage, the zero-to-peak voltage shall not exceed the rated DC voltage. When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage.
- (2) Abnormal voltages (surge voltage, static electricity, pulse voltage, etc.) shall not exceed the rated DC voltage.

Typical Voltage Applied to the DC Capacitor

| DC Voltage | DC+AC Voltage A | AC Voltage | Pulse Voltage |  |  |  |  |
|------------|-----------------|------------|---------------|--|--|--|--|
| E          | E               | E          | E             |  |  |  |  |

(E: Maximum possible applied voltage.)

#### 1-2. Influence of over voltage

Over voltage that is applied to the capacitor may result in an electrical short circuit caused by the breakdown of the internal dielectric layers. The time duration until breakdown depends on the applied voltage and the ambient temperature.

Use a safety standard certified capacitor in a power supply input circuit (AC filter), as it is also necessary to consider the withstand voltage and impulse withstand voltage defined for each device.

#### 2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on <a href="mailto:the condition of atmosphere temperature 25">the capacitors</a> (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on <a href="mailto:the condition of atmosphere temperature 25">the capacitors</a> (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on <a href="mailto:the condition of atmosphere temperature 25">the capacitors</a> (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on <a href="mailto:the condition of atmosphere temperature 25">the capacitors</a> (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on <a href="mailto:the condition of atmosphere temperature 25">the capacitors</a> (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on <a href="mailto:the capacitors">the capacitors</a> (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on <a href="mailto:the capacitors">the capacitors</a> (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on <a href="mailto:the capacitors">the capacitors</a> (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on <a href="mailto:the capacitors">the capacitors</a> (Temp.Char. : X7R,X7S,X8L, etc.), applied to the load such as self-generated heat is within 20 °C on <a href="mailto:the capacitors">the capacitors</a> (Temp.Char. : X7R,X7S,X8L, etc.), applied to the load such as self-generated h

Since the self-heating is low in the Class 1 capacitors (Temp.Char.: C0G,U2J,X8G, etc.), the allowable power becomes extremely high compared to the Class 2 capacitors.

However, when a load with self-heating of 20°C is applied at the rated voltage, the allowable power may be exceeded. Please confirm that there is no rising trend of the capacitor's surface temperature and that the surface temperature of the capacitor does not exceed the maximum operating temperature.

Excessive generation of heat may cause deterioration of the characteristics and reliability of the capacitor.

When measuring the self-heating temperature, be aware that accurate measurement may not be possible due to the following effects.

- The heat generated by other parts
- Air flow such as convection and cooling fans
- Temperature sensor used for measuring surface temperature of capacitor
   In the case using a thermocouple, it is recommended that use a K thermocouple of Φ0.1mm with less heat capacity.

#### 3. FAIL-SAFE

Capacitors that are cracked by dropping or bending of the board may cause deterioration of the insulation resistance, and result in a short.

If the circuit being used may cause an electrical shock, smoke or fire when a capacitor is shorted, be sure to install fail-safe functions, such as a fuse, to prevent secondary accidents.

#### 4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more. Due to moisture condensation caused by rapid humidity changes, or the photochemical change caused by direct sunlight on the terminal electrodes, the solderability and electrical performance may deteriorate. Do not store capacitors under direct sunlight or in high humidity conditions.

#### 5. VIBRATION AND IMPACT

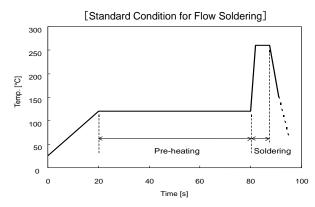
Do not expose a capacitor or its leads to excessive shock or vibration during use.

- 5-1. Mechanical shock due to being dropped may cause damage or a crack in the dielectric material of the capacitor.
  - Do not use a dropped capacitor because the quality and reliability may be deteriorated.
- 5-2. Excessive shock or vibration may cause to fatigue destruction of lead wires mounted on the circuit board. If necessary, take measures to hold a capacitor on the circuit boards by adhesive, molding resin or coating and other.
  - Please confirm there is no influence of holding measures on the product with an intended equipment.

#### 6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

Please verify that the soldering process does not affect the quality of capacitors.


#### 6-1. Flow Soldering

Soldering temperature : 260 °C max.

Soldering time : 7.5 s max.

Preheating temperature : 120 °C max.

Preheating time : 60 s max.



## 6-2. Reflow Soldering

Do not apply reflow soldering.

#### 6-3. Soldering Iron

Temperature of iron-tip : 350 °C max.
Soldering iron wattage : 60 W max.
Soldering time : 3.5 s max.

#### 7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

# 8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile.

So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

#### 9. LIMITATION OF APPLICATIONS

The products listed in the specification(hereinafter the product(s) is called as the "Product(s)") are designed and manufactured for applications specified in the specification. (hereinafter called as the "Specific Application")

We shall not warrant anything in connection with the Products including fitness, performance, adequateness, safety, or quality, in the case of applications listed in from (1) to (11) written at the end of this precautions, which may generally require high performance, function, quality, management of production or safety.

Therefore, the Product shall be applied in compliance with the specific application.

WE DISCLAIM ANY LOSS AND DAMAGES ARISING FROM OR IN CONNECTION WITH THE PRODUCTS INCLUDING BUT NOT LIMITED TO THE CASE SUCH LOSS AND DAMAGES CAUSED BY THE UNEXPECTED ACCIDENT, IN EVENT THAT (i) THE PRODUCT IS APPLIED FOR THE PURPOSE WHICH IS NOT SPECIFIED AS THE SPECIFIC APPLICATION FOR THE PRODUCT, AND/OR (ii) THE PRODUCT IS APPLIED FOR ANY FOLLOWING APPLICATION PURPOSES FROM (1) TO (11) (EXCEPT THAT SUCH APPLICATION PURPOSE IS UNAMBIGUOUSLY SPECIFIED AS SPECIFIC APPLICATION FOR THE PRODUCT IN OUR CATALOG SPECIFICATION FORMS, DATASHEETS, OR OTHER DOCUMENTS OFFICIALLY ISSUED BY US\*)

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment
- 7. Traffic control equipment
- 8. Disaster prevention/security equipment
- 9. Industrial data-processing equipment
- 10. Combustion/explosion control equipment
- 11. Equipment with complexity and/or required reliability equivalent to the applications listed in the above.

For exploring information of the Products which will be compatible with the particular purpose other than those specified in the specification, please contact our sales offices, distribution agents, or trading companies with which you make a deal, or via our web contact form.

Contact form: https://www.murata.com/contactform

\*We may design and manufacture particular Products for applications listed in (1) to (11). Provided that, in such case we shall unambiguously specify such Specific Application in the specification without any exception

Therefore, any other documents and/or performances, whether exist or non-exist, shall not be deemed as the evidence to imply that we accept the applications listed in (1) to (11).

## NOTICE

#### 1. CLEANING

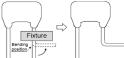
- 1-1. Please evaluate the capacitor using actual cleaning equipment and conditions to confirm the quality, and select the solvent for cleaning.
- 1-2. Unsuitable cleaning may leave residual flux or other foreign substances, causing deterioration of electrical characteristics and the reliability of the capacitors.
- 1-3. To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.


#### 2. SOLDERING AND MOUNTING

2-1. Insert the lead wire into the PCB with a distance appropriate to the lead space.

If the lead wires are inserted into different spacing holes, cracks may occur in the outer resin or the internal element.

2-2. When bending the lead wire, excessive force applied to the capacitor body may cause cracks in the outer resin or the internal element. Hold the lead wire closer to the capacitor body than the lead wire bending position with the fixture, then bend it.

(See the right figure)



- 2-3. When cutting and clinching the lead wire, do not apply excessive force to the capacitor body.
- 2-4. When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.

#### 3. CAPACITANCE CHANGE OF CAPACITORS

Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

### 4. CHARACTERISTICS EVALUATION IN THE ACTUAL SYSTEM

- 4-1. Evaluate the capacitor in the actual system, to confirm that there is no problem with the performance and specification values in a finished product before using.
- 4-2. Since a voltage dependency and temperature dependency exists in the capacitance of Class 2 ceramic capacitors, the capacitance may change depending on the operating conditions in the actual system. Therefore, be sure to evaluate the various characteristics, such as the leakage current and noise absorptivity, which will affect the capacitance value of the capacitor.
- 4-3. In addition, voltages exceeding the predetermined surge may be applied to the capacitor by the inductance in the actual system.

Evaluate the surge resistance in the actual system as required.

4-4. When using Class 2 ceramic capacitors in AC or pulse circuits, the capacitor itself vibrates at specific frequencies and noise may be generated. Moreover, when the mechanical vibration or shock is added to capacitor, noise may occur.

#### $\triangle$ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this product specification.

# 1. Application

This product specification is applied to Leaded MLCC RHE series.

- 1. Specific applications:
- · Automotive powertrain/safety equipment: Products that can be used for automotive equipment related to running, turning, stopping, safety devices, etc., or equipment whose structure, equipment, and performance are legally required to meet technical standards for safety assurance or environmental protection.
- · Automotive infotainment/comfort equipment: Products that can be used for automotive equipment such as car navigation systems and car audio systems that do not directly relate to human life and whose structure, equipment, and performance are not specifically required by law to meet technical standards for safety assurance or environmental protection.
- ·Medial Equipment [GHTF A/B/C] except for Implant Equipment: Products suitable for use in medical devices designated under the GHTF international classifications as Class A or Class B (the functions of which are not directly involved in protection of human life or property) or in medical devices other than implants designated under the GHTF international classifications as Class C (the malfunctioning of which is considered to pose a comparatively high risk to the human body).
- 2. Unsuitable Application: Applications listed in "Limitation of applications" in this product specification.

## 2. Rating

Applied maximum temperature up to 150°C

Note: Maximum accumulative time to 150°C is within 2000 hours.

• Part Number Configuration

ex.) RHE H03 1E 226 M1 Series Temperature Rated Capacitance Capacitance Dimension Lead Individual Package Characteristics Tolerance (LxW) Specification Voltage Style

Series

| Code | Content                  |
|------|--------------------------|
| RHE  | Epoxy coated, 150°C max. |

Temperature Characteristics

| Code | Temp. Char.   | Temp. Range        | Cap. Change | Standard<br>Temp. | Operating<br>Temp. Range |
|------|---------------|--------------------|-------------|-------------------|--------------------------|
| 1.0  | X8L           | -55 <b>∼</b> 125°C | +/-15%      | 25°C              | -55 <b>∼</b> 150°C       |
| L8   | (Murata code) | 125~150°C          | +15/-40%    | 25 C              | -55° 150 C               |

Rated Voltage

| <u> </u> |               |
|----------|---------------|
| Code     | Rated voltage |
| 1E       | DC25V         |
| 1H       | DC50V         |
| 2A       | DC100V        |

#### Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 226.

$$22 \times 10^6 = 22000000 \text{ pF}$$

• Capacitance Tolerance

| Code | Capacitance Tolerance |
|------|-----------------------|
| K    | +/-10%                |
| М    | +/-20%                |

## • Dimension (LxW)

Please refer to [ Part number list ].

# • Lead Style

\*Lead wire is "solder coated CP wire".

| Code | Lead Style               | Lead spacing (mm) |
|------|--------------------------|-------------------|
| A2   | Straight type            | 2.5+/-0.8         |
| DB   | Straight taping type     | 2.5+0.4/-0.2      |
| K1   | Inside crimp type        | 5.0+/-0.8         |
| M1   | Inside crimp taping type | 5.0+0.6/-0.2      |

## • Individual Specification

Murata's control code.

Please refer to [ Part number list ].

Package

| ╌. | -    |                     |
|----|------|---------------------|
|    | Code | Package             |
|    | Α    | Taping type of Ammo |
|    | В    | Bulk type           |

# 3. Marking

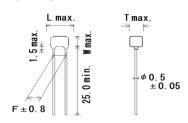
Temp. char. : Letter code : 8 (X8L char.)

Capacitance : 3 digit numbers

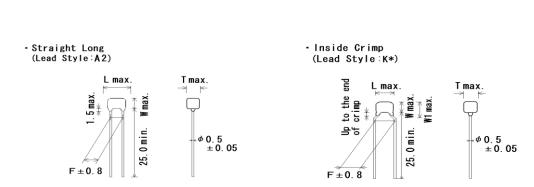
Capacitance tolerance : Code

Rated voltage : Letter code : 2 (DC25V. Except dimension code : 0,1)

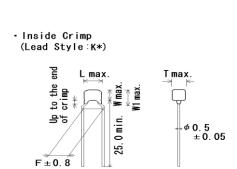
Letter code: 5 (DC50V. Except dimension code: 0,1)
Letter code: 1 (DC100V. Except dimension code: 0,1)


Company name code : Abbreviation : (Except dimension code : 0,1)

(Ex.)

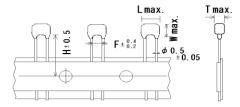

| (EX.)                         |                      |                     |              |
|-------------------------------|----------------------|---------------------|--------------|
| Rated voltage  Dimension code | DC25V                | DC50V               | DC100V       |
| 0,1                           | 8<br>105K            | 8<br>102K           | 8<br>103K    |
| 2                             | € 475<br>K28         | <b>€</b> 6 225 K58  | € 224<br>K18 |
| 3,W                           | <b>C</b> 4226<br>K28 | <b>@</b> 106<br>K58 | -            |

## 4. Part number list


 Straight Long (Lead Style: A2)

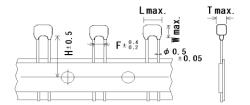


| Customer    | Murata Part Number    | T.C. | DC<br>Rated  | Cap.             | Сар. |     | Dime | ension ( | (mm) |      | Dimension<br>(LxW) | Pa  |
|-------------|-----------------------|------|--------------|------------------|------|-----|------|----------|------|------|--------------------|-----|
| Part Number | Ividiata i art Number | 1.0. | Volt.<br>(V) | Оар.             | Tol. | L   | W    | W1       | F    | Т    | Lead Style         | (pc |
|             | RHEL81E104K0A2H03B    | X8L  | 25           | 0.1µF            | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                | 50  |
|             | RHEL81E154K0A2H03B    | X8L  | 25           | 0.15µF           | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                | 50  |
|             | RHEL81E224K0A2H03B    | X8L  | 25           | 0.22µF           | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                | 50  |
|             | RHEL81E334K1A2H03B    | X8L  | 25           | 0.33µF           | ±10% | 4.0 | 3.5  | -        | 2.5  | 2.5  | 1A2                | 50  |
|             | RHEL81E474K1A2H03B    | X8L  | 25           | 0.47µF           | ±10% | 4.0 | 3.5  | -        | 2.5  | 2.5  | 1A2                | 5   |
|             | RHEL81E684K1A2H03B    | X8L  | 25           | 0.68µF           | ±10% | 4.0 | 3.5  | -        | 2.5  | 2.5  | 1A2                | 5   |
|             | RHEL81E105K1A2H03B    | X8L  | 25           | 1.0µF            | ±10% | 4.0 | 3.5  | -        | 2.5  | 2.5  | 1A2                | 5   |
|             | RHEL81E155K2A2H03B    | X8L  | 25           | 1.5µF            | ±10% | 5.5 | 4.0  | -        | 2.5  | 3.15 | 2A2                | 5   |
|             | RHEL81E225K2A2H03B    | X8L  | 25           | 2.2µF            | ±10% | 5.5 | 4.0  | -        | 2.5  | 3.15 | 2A2                | 5   |
|             | RHEL81E335K2A2H03B    | X8L  | 25           | 3.3µF            | ±10% | 5.5 | 4.0  | -        | 2.5  | 3.15 | 2A2                | 5   |
|             | RHEL81E475K2A2H03B    | X8L  | 25           | 4.7µF            | ±10% | 5.5 | 4.0  | -        | 2.5  | 3.15 | 2A2                | 5   |
|             | RHEL81E106K3A2H03B    | X8L  | 25           | 10µF             | ±10% | 5.5 | 5.0  | -        | 2.5  | 4.0  | 3A2                | 5   |
|             | RHEL81H221K0A2H03B    | X8L  | 50           | 220pF            | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                | 5   |
|             | RHEL81H331K0A2H03B    | X8L  | 50           | 330pF            | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                | 5   |
|             | RHEL81H471K0A2H03B    | X8L  | 50           | 470pF            | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                |     |
|             | RHEL81H681K0A2H03B    | X8L  | 50           | 680pF            | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                |     |
|             | RHEL81H102K0A2H03B    | X8L  | 50           | 1000pF           | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                |     |
|             | RHEL81H152K0A2H03B    | X8L  | 50           | 1500pF           | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                |     |
|             | RHEL81H222K0A2H03B    | X8L  | 50           | 2200pF           | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                |     |
|             | RHEL81H332K0A2H03B    | X8L  | 50           | 3300pF           | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                |     |
|             | RHEL81H472K0A2H03B    | X8L  | 50           | 4700pF           | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                |     |
|             | RHEL81H682K0A2H03B    | X8L  | 50           | 6800pF           | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                |     |
|             | RHEL81H103K0A2H03B    | X8L  | 50           | 10000pF          | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                | 5   |
|             | RHEL81H153K0A2H03B    | X8L  | 50           | 15000pF          | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                | 5   |
|             | RHEL81H223K0A2H03B    | X8L  | 50           | 22000pF          | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                |     |
|             | RHEL81H333K0A2H03B    | X8L  | 50           | 33000pF          | ±10% | 3.6 | 3.5  | _        | 2.5  | 2.5  | 0A2                | 5   |
|             | RHEL81H473K0A2H03B    | X8L  | 50           | 47000pF          | ±10% | 3.6 | 3.5  | _        | 2.5  | 2.5  | 0A2                |     |
|             | RHEL81H683K0A2H03B    | X8L  | 50           | 68000pF          | ±10% | 3.6 | 3.5  | -        | 2.5  | 2.5  | 0A2                | 5   |
|             | RHEL81H104K0A2H03B    | X8L  | 50           | 0.1µF            | ±10% | 3.6 | 3.5  | _        | 2.5  | 2.5  | 0A2                | 5   |
|             | RHEL81H154K1A2H03B    | X8L  | 50           | 0.15µF           | ±10% | 4.0 | 3.5  | -        | 2.5  | 2.5  | 1A2                |     |
|             | RHEL81H224K1A2H03B    | X8L  | 50           | 0.22µF           | ±10% | 4.0 | 3.5  | -        | 2.5  | 2.5  | 1A2                | 5   |
|             | RHEL81H334K1A2H03B    | X8L  | 50           | 0.33µF           | ±10% | 4.0 | 3.5  | _        | 2.5  | 2.5  | 1A2                | 5   |
|             | RHEL81H474K2A2H03B    | X8L  | 50           | 0.47µF           | ±10% | 5.5 | 4.0  | _        | 2.5  | 3.15 |                    | ,   |
|             | RHEL81H684K2A2H03B    | X8L  | 50           | 0.47μΓ<br>0.68μF | ±10% | 5.5 | 4.0  | -        | 2.5  | 3.15 |                    | 5   |
|             | RHEL81H105K2A2H03B    | X8L  | 50           | 1.0µF            | ±10% | 5.5 | 4.0  | -        | 2.5  | 3.15 |                    | 5   |
|             | RHEL81H155K2A2H03B    | X8L  | 50           | 1.5µF            | ±10% | 5.5 | 4.0  | _        | 2.5  | 3.15 |                    | 5   |
|             | RHEL81H225K2A2H03B    | X8L  | 50           | 2.2µF            | ±10% | 5.5 | 4.0  |          | 2.5  | 3.15 |                    | 5   |
|             | RHEL81H335K3A2H03B    | X8L  | 50           | 3.3µF            | ±10% | 5.5 | 5.0  |          | 2.5  | 4.0  |                    | 5   |
|             | RHEL81H475K3A2H03B    | X8L  | 50           | 3.3μF<br>4.7μF   | ±10% | 5.5 | 5.0  |          | 2.5  | 4.0  |                    | 5   |
|             | RHEL82A221K0A2H03B    | X8L  | 100          | 4.7μF<br>220pF   | ±10% | 3.6 | 3.5  |          | 2.5  | 2.5  |                    | 5   |

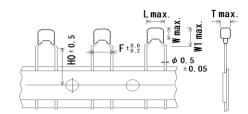



| Customer    | Murata Part Number | T.C. | DC<br>Rated  | Cap.    | Сар. |     | Dime | ension ( | mm) |      | Dimension<br>(LxW) | Pa |
|-------------|--------------------|------|--------------|---------|------|-----|------|----------|-----|------|--------------------|----|
| Part Number | Warda Far Namber   | 1.0. | Volt.<br>(V) | оцр.    | Tol. | L   | W    | W1       | F   | Т    | Lead Style         |    |
|             | RHEL82A331K0A2H03B | X8L  | 100          | 330pF   | ±10% | 3.6 | 3.5  | -        | 2.5 | 2.5  | 0A2                | 50 |
|             | RHEL82A471K0A2H03B | X8L  | 100          | 470pF   | ±10% | 3.6 | 3.5  | -        | 2.5 | 2.5  | 0A2                | 50 |
|             | RHEL82A681K0A2H03B | X8L  | 100          | 680pF   | ±10% | 3.6 | 3.5  | -        | 2.5 | 2.5  | 0A2                | 50 |
|             | RHEL82A102K0A2H03B | X8L  | 100          | 1000pF  | ±10% | 3.6 | 3.5  | -        | 2.5 | 2.5  | 0A2                | 50 |
|             | RHEL82A152K0A2H03B | X8L  | 100          | 1500pF  | ±10% | 3.6 | 3.5  | -        | 2.5 | 2.5  | 0A2                | 5  |
|             | RHEL82A222K0A2H03B | X8L  | 100          | 2200pF  | ±10% | 3.6 | 3.5  | -        | 2.5 | 2.5  | 0A2                | 5  |
|             | RHEL82A332K0A2H03B | X8L  | 100          | 3300pF  | ±10% | 3.6 | 3.5  | -        | 2.5 | 2.5  | 0A2                | 5  |
|             | RHEL82A472K0A2H03B | X8L  | 100          | 4700pF  | ±10% | 3.6 | 3.5  | -        | 2.5 | 2.5  | 0A2                | 5  |
|             | RHEL82A682K0A2H03B | X8L  | 100          | 6800pF  | ±10% | 3.6 | 3.5  | -        | 2.5 | 2.5  | 0A2                | 5  |
|             | RHEL82A103K0A2H03B | X8L  | 100          | 10000pF | ±10% | 3.6 | 3.5  | -        | 2.5 | 2.5  | 0A2                | 5  |
|             | RHEL82A153K0A2H03B | X8L  | 100          | 15000pF | ±10% | 3.6 | 3.5  | -        | 2.5 | 2.5  | 0A2                | 5  |
|             | RHEL82A223K0A2H03B | X8L  | 100          | 22000pF | ±10% | 3.6 | 3.5  | -        | 2.5 | 2.5  | 0A2                | 5  |
|             | RHEL82A333K1A2H03B | X8L  | 100          | 33000pF | ±10% | 4.0 | 3.5  | -        | 2.5 | 2.5  | 1A2                | 5  |
|             | RHEL82A473K1A2H03B | X8L  | 100          | 47000pF | ±10% | 4.0 | 3.5  | -        | 2.5 | 2.5  | 1A2                | 5  |
|             | RHEL82A683K1A2H03B | X8L  | 100          | 68000pF | ±10% | 4.0 | 3.5  | -        | 2.5 | 2.5  | 1A2                |    |
|             | RHEL82A104K1A2H03B | X8L  | 100          | 0.1µF   | ±10% | 4.0 | 3.5  | -        | 2.5 | 2.5  | 1A2                |    |
|             | RHEL82A154K2A2H03B | X8L  | 100          | 0.15µF  | ±10% | 5.5 | 4.0  | -        | 2.5 | 3.15 | 2A2                |    |
|             | RHEL82A224K2A2H03B | X8L  | 100          | 0.22µF  | ±10% | 5.5 | 4.0  | -        | 2.5 | 3.15 | 2A2                |    |
|             | RHEL81E104K0K1H03B | X8L  | 25           | 0.1µF   | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                |    |
|             | RHEL81E154K0K1H03B | X8L  | 25           | 0.15µF  | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                |    |
|             | RHEL81E224K0K1H03B | X8L  | 25           | 0.22µF  | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                |    |
|             | RHEL81E334K1K1H03B | X8L  | 25           | 0.33µF  | ±10% | 4.0 | 3.5  | 5.0      | 5.0 | 2.5  | 1K1                |    |
|             | RHEL81E474K1K1H03B | X8L  | 25           | 0.47µF  | ±10% | 4.0 | 3.5  | 5.0      | 5.0 | 2.5  | 1K1                | 5  |
|             | RHEL81E684K1K1H03B | X8L  | 25           | 0.68µF  | ±10% | 4.0 | 3.5  | 5.0      | 5.0 | 2.5  | 1K1                | 5  |
|             | RHEL81E105K1K1H03B | X8L  | 25           | 1.0µF   | ±10% | 4.0 | 3.5  | 5.0      | 5.0 | 2.5  | 1K1                | 5  |
|             | RHEL81E155K2K1H03B | X8L  | 25           | 1.5µF   | ±10% | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 5  |
|             | RHEL81E225K2K1H03B | X8L  | 25           | 2.2µF   | ±10% | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 5  |
|             | RHEL81E335K2K1H03B | X8L  | 25           | 3.3µF   | ±10% | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 5  |
|             | RHEL81E475K2K1H03B | X8L  | 25           | 4.7µF   | ±10% | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 5  |
|             | RHEL81E106K3K1H03B | X8L  | 25           | 10µF    | ±10% | 5.5 | 5.0  | 7.5      | 5.0 | 4.0  | 3K1                | 5  |
|             | RHEL81E226MWK1H03B | X8L  | 25           | 22µF    | ±20% | 5.5 | 7.5  | 10.0     | 5.0 | 4.0  | WK1                | 5  |
|             | RHEL81H221K0K1H03B | X8L  | 50           | 220pF   | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  |                    | 5  |
|             | RHEL81H331K0K1H03B | X8L  | 50           | 330pF   | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  |                    | 5  |
|             | RHEL81H471K0K1H03B | X8L  | 50           | 470pF   | ±10% | 3.6 | 3.5  | 6.0      |     | 2.5  |                    | 5  |
|             | RHEL81H681K0K1H03B | X8L  | 50           | 680pF   | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  |                    | 5  |
|             | RHEL81H102K0K1H03B | X8L  | 50           | 1000pF  | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  |                    | 5  |
|             | RHEL81H152K0K1H03B | X8L  | 50           | 1500pF  | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  |                    | 5  |
|             | RHEL81H222K0K1H03B | X8L  | 50           | 2200pF  | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  |                    | 5  |
|             | RHEL81H332K0K1H03B | X8L  | 50           | 3300pF  | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  |                    | 5  |
|             | RHEL81H472K0K1H03B | X8L  | 50           | 4700pF  | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  |                    | 5  |



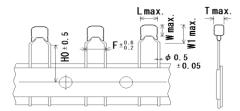

|             | 1                  |      |              |         |      |     |      |          |     |      | Offic . Itiliti    |              |
|-------------|--------------------|------|--------------|---------|------|-----|------|----------|-----|------|--------------------|--------------|
| Customer    | Murata Part Number | T.C. | DC<br>Rated  | Cap.    | Сар. |     | Dime | ension ( | mm) |      | Dimension<br>(LxW) | Pack<br>qty. |
| Part Number | Marata Fare Names  | 1.0. | Volt.<br>(V) | oup.    | Tol. | L   | W    | W1       | F   | Т    | Lead Style         |              |
|             | RHEL81H682K0K1H03B | X8L  | 50           | 6800pF  | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL81H103K0K1H03B | X8L  | 50           | 10000pF | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL81H153K0K1H03B | X8L  | 50           | 15000pF | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL81H223K0K1H03B | X8L  | 50           | 22000pF | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL81H333K0K1H03B | X8L  | 50           | 33000pF | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL81H473K0K1H03B | X8L  | 50           | 47000pF | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL81H683K0K1H03B | X8L  | 50           | 68000pF | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL81H104K0K1H03B | X8L  | 50           | 0.1µF   | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL81H154K1K1H03B | X8L  | 50           | 0.15µF  | ±10% | 4.0 | 3.5  | 5.0      | 5.0 | 2.5  | 1K1                | 500          |
|             | RHEL81H224K1K1H03B | X8L  | 50           | 0.22µF  | ±10% | 4.0 | 3.5  | 5.0      | 5.0 | 2.5  | 1K1                | 500          |
|             | RHEL81H334K1K1H03B | X8L  | 50           | 0.33µF  | ±10% | 4.0 | 3.5  | 5.0      | 5.0 | 2.5  | 1K1                | 500          |
|             | RHEL81H474K2K1H03B | X8L  | 50           | 0.47µF  | ±10% | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500          |
|             | RHEL81H684K2K1H03B | X8L  | 50           | 0.68µF  | ±10% | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500          |
|             | RHEL81H105K2K1H03B | X8L  | 50           | 1.0µF   | ±10% | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500          |
|             | RHEL81H155K2K1H03B | X8L  | 50           | 1.5µF   | ±10% | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500          |
|             | RHEL81H225K2K1H03B | X8L  | 50           | 2.2µF   | ±10% | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500          |
|             | RHEL81H335K3K1H03B | X8L  | 50           | 3.3µF   | ±10% | 5.5 | 5.0  | 7.5      | 5.0 | 4.0  | 3K1                | 500          |
|             | RHEL81H475K3K1H03B | X8L  | 50           | 4.7µF   | ±10% | 5.5 | 5.0  | 7.5      | 5.0 | 4.0  | 3K1                | 500          |
|             | RHEL81H106MWK1H03B | X8L  | 50           | 10µF    | ±20% | 5.5 | 7.5  | 10.0     | 5.0 | 4.0  | WK1                | 500          |
|             | RHEL82A221K0K1H03B | X8L  | 100          | 220pF   | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL82A331K0K1H03B | X8L  | 100          | 330pF   | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL82A471K0K1H03B | X8L  | 100          | 470pF   | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL82A681K0K1H03B | X8L  | 100          | 680pF   | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL82A102K0K1H03B | X8L  | 100          | 1000pF  | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL82A152K0K1H03B | X8L  | 100          | 1500pF  | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL82A222K0K1H03B | X8L  | 100          | 2200pF  | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL82A332K0K1H03B | X8L  | 100          | 3300pF  | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL82A472K0K1H03B | X8L  | 100          | 4700pF  | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL82A682K0K1H03B | X8L  | 100          | 6800pF  | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL82A103K0K1H03B | X8L  | 100          | 10000pF | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL82A153K0K1H03B | X8L  | 100          | 15000pF | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL82A223K0K1H03B | X8L  | 100          | 22000pF | ±10% | 3.6 | 3.5  | 6.0      | 5.0 | 2.5  | 0K1                | 500          |
|             | RHEL82A333K1K1H03B | X8L  | 100          | 33000pF | ±10% | 4.0 | 3.5  | 5.0      | 5.0 | 2.5  | 1K1                | 500          |
|             | RHEL82A473K1K1H03B | X8L  | 100          | 47000pF | ±10% | 4.0 | 3.5  | 5.0      | 5.0 | 2.5  | 1K1                | 500          |
|             | RHEL82A683K1K1H03B | X8L  | 100          | 68000pF | ±10% | 4.0 | 3.5  | 5.0      | 5.0 | 2.5  | 1K1                | 500          |
|             | RHEL82A104K1K1H03B | X8L  | 100          | 0.1µF   | ±10% | 4.0 | 3.5  | 5.0      | 5.0 | 2.5  | 1K1                | 500          |
|             | RHEL82A154K2K1H03B | X8L  | 100          | 0.15µF  | ±10% | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500          |
|             | RHEL82A224K2K1H03B | X8L  | 100          | 0.22µF  | ±10% | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500          |

# Straight Taping (Lead Style:DB)




|             |                     |      |              |                |      |     |     |        |        |      |      | Unit : mm          |          |
|-------------|---------------------|------|--------------|----------------|------|-----|-----|--------|--------|------|------|--------------------|----------|
| Customer    | Murata Part Number  | T.C. | DC<br>Rated  | Cap.           | Cap. |     | D   | imensi | on (mr | n)   |      | Dimension<br>(LxW) | Pa<br>qt |
| Part Number | marata r anvivamber |      | Volt.<br>(V) | oup.           | Tol. | L   | W   | W1     | F      | Т    | H/H0 | Lead Style         |          |
|             | RHEL81E104K0DBH03A  | X8L  | 25           | 0.1µF          | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 20       |
|             | RHEL81E154K0DBH03A  | X8L  | 25           | 0.15µF         | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81E224K0DBH03A  | X8L  | 25           | 0.22µF         | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81E334K1DBH03A  | X8L  | 25           | 0.33µF         | ±10% | 4.0 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 1DB                | 2        |
|             | RHEL81E474K1DBH03A  | X8L  | 25           | 0.47µF         | ±10% | 4.0 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 1DB                | 2        |
|             | RHEL81E684K1DBH03A  | X8L  | 25           | 0.68µF         | ±10% | 4.0 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 1DB                | 2        |
|             | RHEL81E105K1DBH03A  | X8L  | 25           | 1.0µF          | ±10% | 4.0 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 1DB                | 2        |
|             | RHEL81E155K2DBH03A  | X8L  | 25           | 1.5µF          | ±10% | 5.5 | 4.0 | -      | 2.5    | 3.15 | 16.0 | 2DB                | 2        |
|             | RHEL81E225K2DBH03A  | X8L  | 25           | 2.2µF          | ±10% | 5.5 | 4.0 | -      | 2.5    | 3.15 | 16.0 | 2DB                | 2        |
|             | RHEL81E335K2DBH03A  | X8L  | 25           | 3.3µF          | ±10% | 5.5 | 4.0 | -      | 2.5    | 3.15 | 16.0 | 2DB                | 2        |
|             | RHEL81E475K2DBH03A  | X8L  | 25           | 4.7µF          | ±10% | 5.5 | 4.0 | -      | 2.5    | 3.15 | 16.0 | 2DB                | 2        |
|             | RHEL81E106K3DBH03A  | X8L  | 25           | 10µF           | ±10% | 5.5 | 5.0 | -      | 2.5    | 4.0  | 16.0 | 3DB                | 1        |
|             | RHEL81H221K0DBH03A  | X8L  | 50           | 220pF          | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H331K0DBH03A  | X8L  | 50           | 330pF          | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H471K0DBH03A  | X8L  | 50           | 470pF          | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H681K0DBH03A  | X8L  | 50           | 680pF          | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H102K0DBH03A  | X8L  | 50           | 1000pF         | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H152K0DBH03A  | X8L  | 50           | 1500pF         | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H222K0DBH03A  | X8L  | 50           | 2200pF         | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H332K0DBH03A  | X8L  | 50           | 3300pF         | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H472K0DBH03A  | X8L  | 50           | 4700pF         | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H682K0DBH03A  | X8L  | 50           | 6800pF         | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H103K0DBH03A  | X8L  | 50           | 10000pF        | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H153K0DBH03A  | X8L  | 50           | 15000pF        | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H223K0DBH03A  | X8L  | 50           | 22000pF        | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H333K0DBH03A  | X8L  | 50           | 33000pF        | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H473K0DBH03A  | X8L  | 50           | 47000pF        | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H683K0DBH03A  | X8L  | 50           | 68000pF        | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H104K0DBH03A  | X8L  | 50           | 0.1µF          | ±10% | 3.6 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 0DB                | 2        |
|             | RHEL81H154K1DBH03A  | X8L  | 50           | 0.15µF         | ±10% | 4.0 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 1DB                | 2        |
|             | RHEL81H224K1DBH03A  | X8L  | 50           | 0.22µF         | ±10% | 4.0 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 1DB                | 2        |
|             | RHEL81H334K1DBH03A  | X8L  | 50           | 0.33µF         | ±10% | 4.0 | 3.5 | -      | 2.5    | 2.5  | 16.0 | 1DB                | 2        |
|             | RHEL81H474K2DBH03A  | X8L  | 50           | 0.47µF         | ±10% | 5.5 | 4.0 | -      | 2.5    | 3.15 | 16.0 | 2DB                | 2        |
|             | RHEL81H684K2DBH03A  | X8L  | 50           | 0.68µF         | ±10% | 5.5 | 4.0 | -      |        | 3.15 |      |                    | 2        |
|             | RHEL81H105K2DBH03A  | X8L  | 50           | 1.0µF          | ±10% | 5.5 | 4.0 | -      | 2.5    |      | 16.0 | 2DB                | 2        |
|             | RHEL81H155K2DBH03A  | X8L  | 50           | 1.5µF          | ±10% | 5.5 | 4.0 | _      | 2.5    |      |      | 2DB                | 2        |
|             | RHEL81H225K2DBH03A  | X8L  | 50           | 2.2µF          | ±10% | 5.5 | 4.0 | _      | 2.5    |      | 16.0 | 2DB                | 2        |
|             | RHEL81H335K3DBH03A  | X8L  | 50           | 3.3µF          | ±10% | 5.5 | 5.0 | _      | 2.5    |      | 16.0 | 3DB                | 1        |
|             | RHEL81H475K3DBH03A  | X8L  | 50           | 3.5μr<br>4.7μF | ±10% | 5.5 | 5.0 |        | 2.5    |      | 16.0 | 3DB                | 1:       |
|             | RHEL82A221K0DBH03A  | X8L  | 100          | 220pF          | ±10% | 3.6 | 3.5 |        | 2.5    | 2.5  | 16.0 | 0DB                | 20       |

# Straight Taping (Lead Style:DB)




# Inside Crimp Taping (Lead Style: M\*)



|             |                             |      |                             |         |                |     |     |      | Onit . min |      |                    |              |      |
|-------------|-----------------------------|------|-----------------------------|---------|----------------|-----|-----|------|------------|------|--------------------|--------------|------|
| Customer    | Murata Part Number          | T.C. | DC<br>Rated<br>Volt.<br>(V) | Cap.    | Dimension (mm) |     |     |      |            |      | Dimension<br>(LxW) | Pack<br>qty. |      |
| Part Number | Ividiata i art Number       | 1.0. |                             | Oap.    | Tol.           | L   | W   | W1   | F          | Т    | H/H0               | . ` ′ .      |      |
|             | RHEL82A331K0DBH03A          | X8L  | 100                         | 330pF   | ±10%           | 3.6 | 3.5 | -    | 2.5        | 2.5  | 16.0               | 0DB          | 2000 |
|             | RHEL82A471K0DBH03A          | X8L  | 100                         | 470pF   | ±10%           | 3.6 | 3.5 | -    | 2.5        | 2.5  | 16.0               | 0DB          | 2000 |
|             | RHEL82A681K0DBH03A          | X8L  | 100                         | 680pF   | ±10%           | 3.6 | 3.5 | -    | 2.5        | 2.5  | 16.0               | 0DB          | 2000 |
|             | RHEL82A102K0DBH03A          | X8L  | 100                         | 1000pF  | ±10%           | 3.6 | 3.5 | -    | 2.5        | 2.5  | 16.0               | 0DB          | 2000 |
|             | RHEL82A152K0DBH03A          | X8L  | 100                         | 1500pF  | ±10%           | 3.6 | 3.5 | -    | 2.5        | 2.5  | 16.0               | 0DB          | 2000 |
|             | RHEL82A222K0DBH03A          | X8L  | 100                         | 2200pF  | ±10%           | 3.6 | 3.5 | -    | 2.5        | 2.5  | 16.0               | 0DB          | 2000 |
|             | RHEL82A332K0DBH03A          | X8L  | 100                         | 3300pF  | ±10%           | 3.6 | 3.5 | -    | 2.5        | 2.5  | 16.0               | 0DB          | 2000 |
|             | RHEL82A472K0DBH03A          | X8L  | 100                         | 4700pF  | ±10%           | 3.6 | 3.5 | -    | 2.5        | 2.5  | 16.0               | 0DB          | 2000 |
|             | RHEL82A682K0DBH03A          | X8L  | 100                         | 6800pF  | ±10%           | 3.6 | 3.5 | -    | 2.5        | 2.5  | 16.0               | 0DB          | 2000 |
|             | RHEL82A103K0DBH03A          | X8L  | 100                         | 10000pF | ±10%           | 3.6 | 3.5 | -    | 2.5        | 2.5  | 16.0               | 0DB          | 2000 |
|             | RHEL82A153K0DBH03A          | X8L  | 100                         | 15000pF | ±10%           | 3.6 | 3.5 | -    | 2.5        | 2.5  | 16.0               | 0DB          | 2000 |
|             | RHEL82A223K0DBH03A          | X8L  | 100                         | 22000pF | ±10%           | 3.6 | 3.5 | -    | 2.5        | 2.5  | 16.0               | 0DB          | 2000 |
|             | RHEL82A333K1DBH03A          | X8L  | 100                         | 33000pF | ±10%           | 4.0 | 3.5 | -    | 2.5        | 2.5  | 16.0               | 1DB          | 2000 |
|             | RHEL82A473K1DBH03A          | X8L  | 100                         | 47000pF | ±10%           | 4.0 | 3.5 | -    | 2.5        | 2.5  | 16.0               | 1DB          | 2000 |
|             | RHEL82A683K1DBH03A          | X8L  | 100                         | 68000pF | ±10%           | 4.0 | 3.5 | -    | 2.5        | 2.5  | 16.0               | 1DB          | 2000 |
|             | RHEL82A104K1DBH03A          | X8L  | 100                         | 0.1µF   | ±10%           | 4.0 | 3.5 | -    | 2.5        | 2.5  | 16.0               | 1DB          | 2000 |
|             | RHEL82A154K2DBH03A          | X8L  | 100                         | 0.15µF  | ±10%           | 5.5 | 4.0 | -    | 2.5        | 3.15 | 16.0               | 2DB          | 2000 |
|             | RHEL82A224K2DBH03A          | X8L  | 100                         | 0.22µF  | ±10%           | 5.5 | 4.0 | -    | 2.5        | 3.15 | 16.0               | 2DB          | 2000 |
|             | RHEL81E104K0M1H03A          | X8L  | 25                          | 0.1µF   | ±10%           | 3.6 | 3.5 | 6.0  | 5.0        | 2.5  | 16.0               | 0M1          | 2000 |
|             | RHEL81E154K0M1H03A          | X8L  | 25                          | 0.15µF  | ±10%           | 3.6 | 3.5 | 6.0  | 5.0        | 2.5  | 16.0               | 0M1          | 2000 |
|             | RHEL81E224K0M1H03A          | X8L  | 25                          | 0.22µF  | ±10%           | 3.6 | 3.5 | 6.0  | 5.0        | 2.5  | 16.0               | 0M1          | 2000 |
|             | RHEL81E334K1M1H03A          | X8L  | 25                          | 0.33µF  | ±10%           | 4.0 | 3.5 | 5.0  | 5.0        | 2.5  | 16.0               | 1M1          | 2000 |
|             | RHEL81E474K1M1H03A          | X8L  | 25                          | 0.47µF  | ±10%           | 4.0 | 3.5 | 5.0  | 5.0        | 2.5  | 16.0               | 1M1          | 2000 |
|             | RHEL81E684K1M1H03A          | X8L  | 25                          | 0.68µF  | ±10%           | 4.0 | 3.5 | 5.0  | 5.0        | 2.5  | 16.0               | 1M1          | 2000 |
|             | RHEL81E105K1M1H03A          | X8L  | 25                          | 1.0µF   | ±10%           | 4.0 | 3.5 | 5.0  | 5.0        | 2.5  | 16.0               | 1M1          | 2000 |
|             | RHEL81E155K2M1H03A          | X8L  | 25                          | 1.5µF   | ±10%           | 5.5 | 4.0 | 6.0  | 5.0        | 3.15 | 16.0               | 2M1          | 2000 |
|             | RHEL81E225K2M1H03A          | X8L  | 25                          | 2.2µF   | ±10%           | 5.5 | 4.0 | 6.0  | 5.0        | 3.15 |                    | 2M1          | 2000 |
|             | RHEL81E335K2M1H03A          | X8L  | 25                          | 3.3µF   | ±10%           | 5.5 | 4.0 | 6.0  | 5.0        | 3.15 | 16.0               | 2M1          | 2000 |
|             | RHEL81E475K2M1H03A          | X8L  | 25                          | 4.7µF   | ±10%           | 5.5 | 4.0 | 6.0  | 5.0        | 3.15 | 16.0               | 2M1          | 2000 |
|             | RHEL81E106K3M1H03A          | X8L  | 25                          | 10µF    | ±10%           | 5.5 | 5.0 | 7.5  | 5.0        | 4.0  | 16.0               | 3M1          | 1500 |
|             | RHEL81E226MWM1H03A          | X8L  | 25                          | 22µF    | ±20%           | 5.5 | 7.5 | 10.0 | 5.0        | 4.0  | 16.0               | WM1          | 1500 |
|             | RHEL81H221K0M1H03A          | X8L  | 50                          | 220pF   | ±10%           | 3.6 | 3.5 | 6.0  | 5.0        | 2.5  | 16.0               | 0M1          | 2000 |
|             | RHEL81H331K0M1H03A          | X8L  | 50                          | 330pF   | ±10%           | 3.6 | 3.5 | 6.0  | 5.0        | 2.5  |                    | 0M1          | 2000 |
|             | RHEL81H471K0M1H03A          | X8L  | 50                          | 470pF   | ±10%           | 3.6 | 3.5 |      |            |      | 16.0               |              | 2000 |
|             | RHEL81H681K0M1H03A          | X8L  | 50                          | 680pF   | ±10%           | 3.6 | 3.5 | 6.0  | 5.0        |      |                    |              | 2000 |
|             | RHEL81H102K0M1H03A          | X8L  | 50                          | 1000pF  | ±10%           | 3.6 | 3.5 | 6.0  | 5.0        |      |                    |              | 2000 |
|             | RHEL81H152K0M1H03A          | X8L  | 50                          | 1500pF  | ±10%           | 3.6 | 3.5 | 6.0  | 5.0        |      |                    |              | 2000 |
|             | RHEL81H222K0M1H03A          | X8L  | 50                          | 2200pF  | ±10%           | 3.6 | 3.5 |      | 5.0        |      |                    |              | 2000 |
|             | RHEL81H332K0M1H03A          | X8L  | 50                          | 3300pF  | ±10%           | 3.6 | 3.5 | 6.0  | 5.0        |      |                    |              | 2000 |
|             | RHEL81H472K0M1H03A          | X8L  | 50                          | 4700pF  | ±10%           | 3.6 | 3.5 | 6.0  | 5.0        |      |                    |              | 2000 |
|             | TATILLO IT IT ZIXOWITI IOSA | AUL  | 50                          | 47 00pi | ±1070          | 5.0 | 5.5 | 0.0  | 5.0        | 2.0  | 10.0               | OIVII        | 2000 |
|             |                             |      |                             |         |                |     |     |      |            |      |                    |              |      |

# Inside Crimp Taping (Lead Style: M\*)



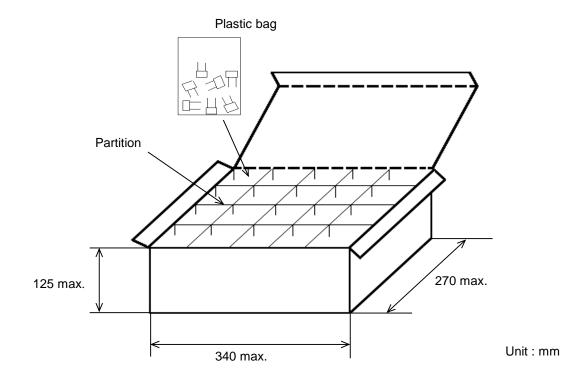
| Customer<br>Part Number | Murata Part Number | T.C. | DC<br>Rated<br>Volt. | Сар.    | Cap.<br>Tol. | Dimension (mm) |     |      |     |      | I    | Dimension<br>(LxW) | qty.  |
|-------------------------|--------------------|------|----------------------|---------|--------------|----------------|-----|------|-----|------|------|--------------------|-------|
| T dit Tumbor            |                    |      | (V)                  |         | 101.         | L              | W   | W1   | F   | Т    | H/H0 | Lead Style         | (pcs) |
|                         | RHEL81H682K0M1H03A | X8L  | 50                   | 6800pF  | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL81H103K0M1H03A | X8L  | 50                   | 10000pF | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL81H153K0M1H03A | X8L  | 50                   | 15000pF | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL81H223K0M1H03A | X8L  | 50                   | 22000pF | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL81H333K0M1H03A | X8L  | 50                   | 33000pF | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL81H473K0M1H03A | X8L  | 50                   | 47000pF | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL81H683K0M1H03A | X8L  | 50                   | 68000pF | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL81H104K0M1H03A | X8L  | 50                   | 0.1µF   | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL81H154K1M1H03A | X8L  | 50                   | 0.15µF  | ±10%         | 4.0            | 3.5 | 5.0  | 5.0 | 2.5  | 16.0 | 1M1                | 2000  |
|                         | RHEL81H224K1M1H03A | X8L  | 50                   | 0.22µF  | ±10%         | 4.0            | 3.5 | 5.0  | 5.0 | 2.5  | 16.0 | 1M1                | 2000  |
|                         | RHEL81H334K1M1H03A | X8L  | 50                   | 0.33µF  | ±10%         | 4.0            | 3.5 | 5.0  | 5.0 | 2.5  | 16.0 | 1M1                | 2000  |
|                         | RHEL81H474K2M1H03A | X8L  | 50                   | 0.47µF  | ±10%         | 5.5            | 4.0 | 6.0  | 5.0 | 3.15 | 16.0 | 2M1                | 2000  |
|                         | RHEL81H684K2M1H03A | X8L  | 50                   | 0.68µF  | ±10%         | 5.5            | 4.0 | 6.0  | 5.0 | 3.15 | 16.0 | 2M1                | 2000  |
|                         | RHEL81H105K2M1H03A | X8L  | 50                   | 1.0µF   | ±10%         | 5.5            | 4.0 | 6.0  | 5.0 | 3.15 | 16.0 | 2M1                | 2000  |
|                         | RHEL81H155K2M1H03A | X8L  | 50                   | 1.5µF   | ±10%         | 5.5            | 4.0 | 6.0  | 5.0 | 3.15 | 16.0 | 2M1                | 2000  |
|                         | RHEL81H225K2M1H03A | X8L  | 50                   | 2.2µF   | ±10%         | 5.5            | 4.0 | 6.0  | 5.0 | 3.15 | 16.0 | 2M1                | 2000  |
|                         | RHEL81H335K3M1H03A | X8L  | 50                   | 3.3µF   | ±10%         | 5.5            | 5.0 | 7.5  | 5.0 | 4.0  | 16.0 | 3M1                | 1500  |
|                         | RHEL81H475K3M1H03A | X8L  | 50                   | 4.7µF   | ±10%         | 5.5            | 5.0 | 7.5  | 5.0 | 4.0  | 16.0 | 3M1                | 1500  |
|                         | RHEL81H106MWM1H03A | X8L  | 50                   | 10µF    | ±20%         | 5.5            | 7.5 | 10.0 | 5.0 | 4.0  | 16.0 | WM1                | 1500  |
|                         | RHEL82A221K0M1H03A | X8L  | 100                  | 220pF   | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL82A331K0M1H03A | X8L  | 100                  | 330pF   | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL82A471K0M1H03A | X8L  | 100                  | 470pF   | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL82A681K0M1H03A | X8L  | 100                  | 680pF   | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL82A102K0M1H03A | X8L  | 100                  | 1000pF  | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL82A152K0M1H03A | X8L  | 100                  | 1500pF  | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL82A222K0M1H03A | X8L  | 100                  | 2200pF  | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL82A332K0M1H03A | X8L  | 100                  | 3300pF  | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL82A472K0M1H03A | X8L  | 100                  | 4700pF  | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL82A682K0M1H03A | X8L  | 100                  | 6800pF  | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL82A103K0M1H03A | X8L  | 100                  | 10000pF | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL82A153K0M1H03A | X8L  | 100                  | 15000pF | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL82A223K0M1H03A | X8L  | 100                  | 22000pF | ±10%         | 3.6            | 3.5 | 6.0  | 5.0 | 2.5  | 16.0 | 0M1                | 2000  |
|                         | RHEL82A333K1M1H03A | X8L  | 100                  | 33000pF | ±10%         | 4.0            | 3.5 | 5.0  | 5.0 | 2.5  | 16.0 | 1M1                | 2000  |
|                         | RHEL82A473K1M1H03A | X8L  | 100                  | 47000pF | ±10%         | 4.0            | 3.5 | 5.0  | 5.0 | 2.5  | 16.0 | 1M1                | 2000  |
|                         | RHEL82A683K1M1H03A | X8L  | 100                  | 68000pF | ±10%         | 4.0            | 3.5 | 5.0  | 5.0 | 2.5  | 16.0 | 1M1                | 2000  |
|                         | RHEL82A104K1M1H03A | X8L  | 100                  | 0.1µF   | ±10%         | 4.0            | 3.5 | 5.0  | 5.0 | 2.5  | 16.0 | 1M1                | 2000  |
|                         | RHEL82A154K2M1H03A | X8L  | 100                  | 0.15µF  | ±10%         | 5.5            | 4.0 | 6.0  | 5.0 | 3.15 | 16.0 | 2M1                | 2000  |
|                         | RHEL82A224K2M1H03A | X8L  | 100                  | 0.22µF  | ±10%         | 5.5            | 4.0 | 6.0  | 5.0 | 3.15 | 16.0 | 2M1                | 2000  |

## Reference only

| Spe | cification     |             |                                          |                                                                                               |  |  |  |  |  |  |
|-----|----------------|-------------|------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| No. | Tes            | t Item      | Specification                            | Test Method (Compliant Standard:AEC-Q200)                                                     |  |  |  |  |  |  |
| 1   | Pre-and Post-S | Stress      |                                          |                                                                                               |  |  |  |  |  |  |
| 2   | High           | Appearance  | No defects or abnormalities.             | Sit the capacitor for 1000±12 hours at 150±3°C. Let sit for 24±2 hours                        |  |  |  |  |  |  |
|     | Temperature    | Capacitance | within ±12.5%                            | at *room condition, then measure.                                                             |  |  |  |  |  |  |
|     | Exposure       | Change      |                                          |                                                                                               |  |  |  |  |  |  |
|     | (Storage)      | D.F.        | 0.04 max.                                | •Pretreatment                                                                                 |  |  |  |  |  |  |
|     | (Otorago)      | I.R.        | More than 1,000MΩ or 50MΩ•μF             | Perform the heat treatment at 150+0/-10°C for 60±5 min and                                    |  |  |  |  |  |  |
|     |                | i.ix.       | (Whichever is smaller)                   | then let sit for 24±2 hours at *room condition.                                               |  |  |  |  |  |  |
| 2   | Temperature    | Annogrange  | No defects or abnormalities except color | Perform the 1000 cycles according to the four heat treatments listed                          |  |  |  |  |  |  |
| 3   |                | Appearance  | '                                        |                                                                                               |  |  |  |  |  |  |
|     | Cycling        | 9 ;         | change of outer coating.                 | in the following table. Let sit for 24±2 hours at *room condition, then measi                 |  |  |  |  |  |  |
|     |                | Capacitance | within ±12.5%                            | Step 1 2 3 4                                                                                  |  |  |  |  |  |  |
|     |                | Change      |                                          | Temp55+0/-3 Room 150+3/-0 Room                                                                |  |  |  |  |  |  |
|     |                | D.F.        | 0.05 max.                                | (°C) Temp. Temp.                                                                              |  |  |  |  |  |  |
|     |                | I.R.        | 1,000MΩ or 50MΩ•μF min.                  | Time 15±3 1 15±3 1                                                                            |  |  |  |  |  |  |
|     |                |             | (Whichever is smaller)                   | (min.)                                                                                        |  |  |  |  |  |  |
|     |                |             |                                          | •Pretreatment                                                                                 |  |  |  |  |  |  |
|     |                |             |                                          | Perform the heat treatment at 150+0/-10°C for 60±5 min and                                    |  |  |  |  |  |  |
|     |                |             |                                          | then let sit for 24±2 hours at *room condition.                                               |  |  |  |  |  |  |
| 4   | Moisture       | Appearance  | No defects or abnormalities.             | Apply the 24 hours heat (25 to 65°C) and humidity (80 to 98%)                                 |  |  |  |  |  |  |
|     | Resistance     | Capacitance | within ±12.5%                            | treatment shown below, 10 consecutive times.                                                  |  |  |  |  |  |  |
|     |                | Change      |                                          | Let sit for 24±2 hours at *room condition, then measure.                                      |  |  |  |  |  |  |
|     |                | D.F.        | 0.05 max.                                |                                                                                               |  |  |  |  |  |  |
|     |                | I.R.        | 500MΩ or 25MΩ•μF min.                    | Humidity 80~98% Humidity 80~98% Humidity                                                      |  |  |  |  |  |  |
|     |                | i.i.c.      | (Whichever is smaller)                   | 70 90~98% <b>V</b> 90~98% <b>V</b> 90~98%                                                     |  |  |  |  |  |  |
|     |                |             | (Willichever is smaller)                 | 65                                                                                            |  |  |  |  |  |  |
|     |                |             |                                          | 60                                                                                            |  |  |  |  |  |  |
|     |                |             |                                          | 55                                                                                            |  |  |  |  |  |  |
|     |                |             |                                          | §50<br>§45                                                                                    |  |  |  |  |  |  |
|     |                |             |                                          | 840                                                                                           |  |  |  |  |  |  |
|     |                |             |                                          | [ 535                                                                                         |  |  |  |  |  |  |
|     |                |             |                                          | 730 V V V V V V V V V V V V V V V V V V V                                                     |  |  |  |  |  |  |
|     |                |             |                                          | 25 20 +10                                                                                     |  |  |  |  |  |  |
|     |                |             |                                          | 15 - 2 °C                                                                                     |  |  |  |  |  |  |
|     |                |             |                                          | 10 Initial measurement                                                                        |  |  |  |  |  |  |
|     |                |             |                                          | 5                                                                                             |  |  |  |  |  |  |
|     |                |             |                                          | 0                                                                                             |  |  |  |  |  |  |
|     |                |             |                                          | -5                                                                                            |  |  |  |  |  |  |
|     |                |             |                                          | One cycle 24 hours 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24           |  |  |  |  |  |  |
|     |                |             |                                          | Hours                                                                                         |  |  |  |  |  |  |
|     |                |             |                                          | Pretreatment                                                                                  |  |  |  |  |  |  |
|     |                |             |                                          | Perform the heat treatment at 150+0/-10°C for 60±5 min and                                    |  |  |  |  |  |  |
|     |                |             |                                          | then let sit for 24±2 hours at *room condition.                                               |  |  |  |  |  |  |
| 5   | Biased         | Appearance  | No defects or abnormalities.             | Apply the rated voltage and DC1.3+0.2/-0V (add $100k\Omega$ resistor)                         |  |  |  |  |  |  |
|     | Humidity       | Capacitance | within ±12.5%                            | at 85±3°C and 80 to 85% humidity for 1,000±12 hours.                                          |  |  |  |  |  |  |
|     |                | Change      |                                          | Remove and let sit for 24±2 hours at *room condition, then measure.                           |  |  |  |  |  |  |
|     |                | D.F.        | 0.05 max.                                | The charge/discharge current is less than 50mA.                                               |  |  |  |  |  |  |
|     |                | I.R.        | 500MΩ or 25MΩ•μF min.                    | • Pretreatment                                                                                |  |  |  |  |  |  |
|     |                |             | (Whichever is smaller)                   | Perform a heat treatment at 150+0/-10°C for one hour.                                         |  |  |  |  |  |  |
|     |                |             | , and a simulation,                      | and then set at room temperature for 24±2 hours.                                              |  |  |  |  |  |  |
| 6   | Operational    | Appearation | No defects or abnormalities assert as to | ·                                                                                             |  |  |  |  |  |  |
| 6   | Operational    | Appearance  | No defects or abnormalities except color | Apply 150% of the rated voltage for 1,000±12 hours at 150±3°C.                                |  |  |  |  |  |  |
|     | Life           |             | change of outer coating.                 | Let sit for 24±2 hours at *room condition, then measure.                                      |  |  |  |  |  |  |
|     |                | Capacitance | within ±12.5%                            | The charge/discharge current is less than 50mA.                                               |  |  |  |  |  |  |
|     |                | Change      | 1                                        | •Pretreatment                                                                                 |  |  |  |  |  |  |
|     |                | D.F.        | 0.04 max.                                | Apply test voltage for 60±5 min at test temperature.                                          |  |  |  |  |  |  |
|     |                | I.R.        | 1,000M $\Omega$ or 50M $\Omega$ •μF min. | Remove and let sit for 24±2 hours at *room condition.                                         |  |  |  |  |  |  |
|     |                | <u> </u>    | (Whichever is smaller)                   |                                                                                               |  |  |  |  |  |  |
| 7   | External Visua | I           | No defects or abnormalities.             | Visual inspection.                                                                            |  |  |  |  |  |  |
| В   | Physical Dime  | nsion       | Within the specified dimensions.         | Using calipers and micrometers.                                                               |  |  |  |  |  |  |
| 9   | Marking        |             | To be easily legible.                    | Visual inspection.                                                                            |  |  |  |  |  |  |
| 0   | Resistance     | Appearance  | No defects or abnormalities.             | Per MIL-STD-202 Method 215                                                                    |  |  |  |  |  |  |
| J   |                | - ' '       |                                          |                                                                                               |  |  |  |  |  |  |
|     | to Solvents    | Capacitance | Within the specified tolerance.          | Solvent 1 : 1 part (by volume) of isopropyl alcohol                                           |  |  |  |  |  |  |
|     |                | D.F.        | 0.025 max.                               | 3 parts (by volume) of mineral spirits                                                        |  |  |  |  |  |  |
|     |                | I.R.        | More than 10,000MΩ or 500 MΩ∙μF          | Solvent 2 : Terpene defluxer                                                                  |  |  |  |  |  |  |
|     |                |             | (Whichever is smaller)                   | Solvent 3: 42 parts (by volume) of water                                                      |  |  |  |  |  |  |
|     |                |             |                                          | •                                                                                             |  |  |  |  |  |  |
|     |                |             |                                          | 1part (by volume) of propylene glycol monomethyl ether                                        |  |  |  |  |  |  |
|     |                |             |                                          | 1part (by volume) of propylene glycol monomethyl ether 1 part (by volume) of monoethanolamine |  |  |  |  |  |  |

# Reference only

| No.  | Tes                  | t Item                 | Specification                                                                                                                                                                | Т                                                                                                                                           | Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Compliant St                                                                      | andard:AEC-                            | Q200)              |  |  |
|------|----------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------|--------------------|--|--|
| 11   | Mechanical           | Appearance             | No defects or abnormalities.                                                                                                                                                 | Test Method (Compliant Standard:AEC-Q200)  Three shocks in each direction should be applied along 3                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        |                    |  |  |
|      | Shock                | Capacitance            | Within the specified tolerance.                                                                                                                                              | mutually perpend                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    | -                                      |                    |  |  |
|      |                      | D.F.                   | 0.025 max.                                                                                                                                                                   | The specified tes                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                                                                                |                                        |                    |  |  |
|      |                      |                        |                                                                                                                                                                              | duration: 0.5ms,                                                                                                                            | , peak value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : 1500G and                                                                        | velocity chang                         | ge: 4.7m/s.        |  |  |
| 12   | Vibration            | Appearance             | No defects or abnormalities.                                                                                                                                                 | The capacitor sh                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        |                    |  |  |
|      |                      | Capacitance            | Within the specified tolerance.                                                                                                                                              | having a total am                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    | •                                      |                    |  |  |
|      |                      | D.F.                   | 0.025 max.                                                                                                                                                                   | uniformly between                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                        |                    |  |  |
|      |                      |                        |                                                                                                                                                                              | The frequency ra                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        |                    |  |  |
|      |                      |                        |                                                                                                                                                                              | should be travers                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                        |                    |  |  |
|      |                      |                        |                                                                                                                                                                              | should be applied                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                  |                                        |                    |  |  |
|      |                      |                        |                                                                                                                                                                              | directions (total of                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 000 0                                                                            | araan, porpor                          | raioaiai           |  |  |
| 13-1 | Resistance           | Appearance             | No defects or abnormalities.                                                                                                                                                 | The lead wires s                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nersed in the                                                                      | melted solder                          | 1.5 to 2.0mm       |  |  |
|      | to Soldering         | Capacitance            | Within ±7.5%                                                                                                                                                                 | from the root of t                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        | 1.0 to 2.011111    |  |  |
|      | Heat                 | Change                 | VVIIII 1 1 .0 /0                                                                                                                                                             | nom the root of t                                                                                                                           | omma at 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0010 0 101 10                                                                      | ±1 300011d3.                           |                    |  |  |
|      | (Non-                | Dielectric             | No defects.                                                                                                                                                                  | Pre-treatment                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        |                    |  |  |
|      | Preheat)             | Strength               | ino delects.                                                                                                                                                                 |                                                                                                                                             | l ho stored s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + 150±0/ 10°0                                                                      | for one hou                            |                    |  |  |
|      | rielleat)            | Ŭ                      |                                                                                                                                                                              | Capacitor should                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        |                    |  |  |
|      |                      | (Between               |                                                                                                                                                                              | then place at *ro                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101 24±2 110u                                                                      | irs before mili                        | ai measurement.    |  |  |
|      |                      | terminals)             |                                                                                                                                                                              | Post-treatment                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04.0 h                                                                             |                                        | -1141              |  |  |
| 12.0 | Desisten             | Ann c = ==             | No defects or objective.                                                                                                                                                     | Capacitor should                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        |                    |  |  |
| -    | Resistance           | Appearance             | No defects or abnormalities.                                                                                                                                                 | First the capacito                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        |                    |  |  |
|      | to Soldering         | Capacitance            | Within ±7.5%                                                                                                                                                                 | Then, the lead w                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        |                    |  |  |
|      | Heat                 | Change                 |                                                                                                                                                                              | 1.5 to 2.0mm fro                                                                                                                            | m the root of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | terminal at 2                                                                      | 60±5°C for 7.                          | 5+0/-1 seconds.    |  |  |
|      | (On-                 | Dielectric             | No defects.                                                                                                                                                                  |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        |                    |  |  |
|      | Preheat)             | Strength               |                                                                                                                                                                              | Pre-treatment                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        |                    |  |  |
|      |                      | (Between               |                                                                                                                                                                              | Capacitor should                                                                                                                            | be stored a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt 150+0/-10°0                                                                     | C for one hou                          | Γ,                 |  |  |
|      |                      | terminals)             |                                                                                                                                                                              | then place at *ro                                                                                                                           | om condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | for 24±2 hou                                                                       | irs before initia                      | al measurement.    |  |  |
|      |                      |                        |                                                                                                                                                                              | <ul> <li>Post-treatment</li> <li>Capacitor should be stored for 24±2 hours at *room condition.</li> </ul>                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        |                    |  |  |
|      |                      |                        |                                                                                                                                                                              | Capacitor should                                                                                                                            | be stored fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | or 24±2 hours                                                                      | at *room cor                           | dition.            |  |  |
| 13-3 | Resistance           | Appearance             | No defects or abnormalities.                                                                                                                                                 | Test condition                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        |                    |  |  |
|      | to Soldering         | Capacitance            | Within ±7.5%                                                                                                                                                                 | Temperature of                                                                                                                              | firon-tip: 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0±10°C                                                                             |                                        |                    |  |  |
|      | Heat                 | Change                 |                                                                                                                                                                              | Soldering time: 3.5±0.5 seconds                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        |                    |  |  |
|      | (soldering           | Dielectric             | No defects                                                                                                                                                                   | Soldering positio                                                                                                                           | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                        |                    |  |  |
|      | iron method)         | Strength               |                                                                                                                                                                              | Straight Lead :                                                                                                                             | 1.5 to 2.0mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n from the roo                                                                     | t of terminal.                         |                    |  |  |
|      |                      | (Between               |                                                                                                                                                                              | Crimp Lead : 1.                                                                                                                             | .5 to 2.0mm f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rom the end                                                                        | of lead bend.                          |                    |  |  |
|      |                      | terminals)             |                                                                                                                                                                              |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        |                    |  |  |
|      |                      |                        |                                                                                                                                                                              | <ul> <li>Pre-treatment</li> </ul>                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        |                    |  |  |
|      |                      |                        |                                                                                                                                                                              | Capacitor should                                                                                                                            | be stored a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | at 150+0/-10°0                                                                     | C for one hou                          | r,                 |  |  |
|      |                      |                        |                                                                                                                                                                              | then place at *ro                                                                                                                           | om condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | for 24±2 hou                                                                       | rs before initia                       | al measurement.    |  |  |
|      |                      |                        |                                                                                                                                                                              | <ul> <li>Post-treatment</li> </ul>                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                        |                    |  |  |
|      |                      |                        |                                                                                                                                                                              | Capacitor should                                                                                                                            | be stored fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | or 24±2 hours                                                                      | at *room cor                           | ndition.           |  |  |
| 14   | Thermal              | Appearance             | No defects or abnormalities.                                                                                                                                                 | Perform the 300                                                                                                                             | cycles accor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ding to the tw                                                                     | o heat treatm                          | ents listed in the |  |  |
|      | Shock                | Capacitance            | within ±12.5%                                                                                                                                                                | following table (N                                                                                                                          | Maximum trai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsfer time is 2                                                                    | 20 seconds.).                          |                    |  |  |
|      |                      | Change                 |                                                                                                                                                                              | Let sit for 24±2 h                                                                                                                          | ours at *roor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n condition, th                                                                    | nen measure.                           |                    |  |  |
|      |                      | D.F.                   | 0.05 max.                                                                                                                                                                    | ] [                                                                                                                                         | Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                  | 2                                      |                    |  |  |
| -    |                      | I.R.                   | 1,000MΩ or 50MΩ • μF min.                                                                                                                                                    | 7                                                                                                                                           | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EF : 0/ 0                                                                          | 150.0/0                                |                    |  |  |
|      |                      | Ī                      | (Whichever is smaller)                                                                                                                                                       |                                                                                                                                             | (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -55+0/-3                                                                           | 150+3/-0                               |                    |  |  |
|      |                      |                        |                                                                                                                                                                              |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    | İ                                      | 1                  |  |  |
|      |                      |                        |                                                                                                                                                                              |                                                                                                                                             | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45.0                                                                               | 45.0                                   |                    |  |  |
|      |                      |                        |                                                                                                                                                                              |                                                                                                                                             | Time<br>(min.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15±3                                                                               | 15±3                                   |                    |  |  |
|      |                      |                        |                                                                                                                                                                              | •Pretreatment                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15±3                                                                               | 15±3                                   |                    |  |  |
|      |                      |                        |                                                                                                                                                                              | •Pretreatment Perform the heat                                                                                                              | (min.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |                                        | and                |  |  |
|      |                      |                        |                                                                                                                                                                              | Perform the heat                                                                                                                            | (min.)<br>t treatment a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t 150+0/-10°C                                                                      | for 60±5 min                           | and                |  |  |
| 15   | ESD                  | Appearance             | No defects or abnormalities.                                                                                                                                                 |                                                                                                                                             | (min.) t treatment a ±2 hours at *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t 150+0/-10°C                                                                      | for 60±5 min                           | and                |  |  |
| 15   | ESD                  | Appearance Capacitance |                                                                                                                                                                              | Perform the heat<br>then let sit for 24                                                                                                     | (min.) t treatment a ±2 hours at *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t 150+0/-10°C                                                                      | for 60±5 min                           | and                |  |  |
| 15   | ESD                  | Capacitance            | Within the specified tolerance.                                                                                                                                              | Perform the heat<br>then let sit for 24                                                                                                     | (min.) t treatment a ±2 hours at *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t 150+0/-10°C                                                                      | for 60±5 min                           | and                |  |  |
| 15   | ESD                  | Capacitance<br>D.F.    | Within the specified tolerance.<br>0.025 max.                                                                                                                                | Perform the heat<br>then let sit for 24                                                                                                     | (min.) t treatment a ±2 hours at *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t 150+0/-10°C                                                                      | for 60±5 min                           | and                |  |  |
| 15   | ESD                  | Capacitance            | Within the specified tolerance. 0.025 max. More than 10,000MΩ or 500MΩ • μF                                                                                                  | Perform the heat<br>then let sit for 24                                                                                                     | (min.) t treatment a ±2 hours at *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t 150+0/-10°C                                                                      | for 60±5 min                           | and                |  |  |
|      |                      | Capacitance<br>D.F.    | Within the specified tolerance.  0.025 max.  More than 10,000MΩ or 500MΩ • μF (Whichever is smaller)                                                                         | Perform the heat<br>then let sit for 24<br>Per AEC-Q200-0                                                                                   | (min.)  t treatment a ±2 hours at *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t 150+0/-10°C<br>room condition                                                    | c for 60±5 min                         |                    |  |  |
|      | ESD<br>Solderability | Capacitance<br>D.F.    | Within the specified tolerance.  0.025 max.  More than 10,000MΩ or 500MΩ·μF (Whichever is smaller)  Lead wire should be soldered with                                        | Perform the heat<br>then let sit for 24<br>Per AEC-Q200-0                                                                                   | (min.)  t treatment a  ±2 hours at *  202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t 150+0/-10°C<br>room condition                                                    | c for 60±5 min                         |                    |  |  |
|      |                      | Capacitance<br>D.F.    | Within the specified tolerance.  0.025 max.  More than 10,000MΩ or 500MΩ·μF (Whichever is smaller)  Lead wire should be soldered with uniform coating on the axial direction | Perform the heat then let sit for 24 Per AEC-Q200-0 The terminal of cethanol (25% ros                                                       | (min.)  t treatment a ±2 hours at '  002  capacitor is d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t 150+0/-10°C<br>(room condition<br>ipped into a s<br>propotion).                  | c for 60±5 min                         |                    |  |  |
|      |                      | Capacitance<br>D.F.    | Within the specified tolerance.  0.025 max.  More than 10,000MΩ or 500MΩ·μF (Whichever is smaller)  Lead wire should be soldered with                                        | Perform the heat then let sit for 24 Per AEC-Q200-0  The terminal of cethanol (25% ross Immerse in solder                                   | t treatment a ±2 hours at *  202  capacitor is d sin in weight er solution fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t 150+0/-10°C<br>(room condition<br>ipped into a s<br>propotion).<br>r 2±0.5 secon | c for 60±5 min                         | n                  |  |  |
|      |                      | Capacitance<br>D.F.    | Within the specified tolerance.  0.025 max.  More than 10,000MΩ or 500MΩ·μF (Whichever is smaller)  Lead wire should be soldered with uniform coating on the axial direction | Perform the heat then let sit for 24 Per AEC-Q200-0  The terminal of cethanol (25% ros Immerse in solde In both cases the                   | t treatment a ±2 hours at *  202  capacitor is d sin in weight er solution fo e depth of dip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t 150+0/-10°C<br>(room condition<br>ipped into a s<br>propotion).<br>r 2±0.5 secon | c for 60±5 min                         | n                  |  |  |
|      |                      | Capacitance<br>D.F.    | Within the specified tolerance.  0.025 max.  More than 10,000MΩ or 500MΩ·μF (Whichever is smaller)  Lead wire should be soldered with uniform coating on the axial direction | Perform the heat then let sit for 24 Per AEC-Q200-0  The terminal of cethanol (25% ros Immerse in solde In both cases the the terminal body | (min.)  It treatment as the treatment as | ipped into a s propotion). r 2±0.5 secon                                           | on.  clotion of rosi ds about 1.5 to 2 | n                  |  |  |
|      |                      | Capacitance<br>D.F.    | Within the specified tolerance.  0.025 max.  More than 10,000MΩ or 500MΩ·μF (Whichever is smaller)  Lead wire should be soldered with uniform coating on the axial direction | Perform the heat then let sit for 24 Per AEC-Q200-0  The terminal of cethanol (25% ros Immerse in solde In both cases the                   | (min.)  It treatment as the treatment as | ipped into a s propotion). r 2±0.5 secon                                           | on.  clotion of rosi ds about 1.5 to 2 | n                  |  |  |


# Reference only

| lo. | Tes              | st Item     |                                           | Specification                | Test Method (Compliant Standard:AEC-Q200)                                                         |  |  |  |  |  |
|-----|------------------|-------------|-------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 17  | Electrical       | Appearance  | No defects or                             | abnormalities.               | Visual inspection.  The capacitance/D.F. should be measured at 25°C at the                        |  |  |  |  |  |
|     | Characte-        | Capacitance | Within the spe                            | cified tolerance.            |                                                                                                   |  |  |  |  |  |
|     | rization         | D.F.        | 0.025 max.                                |                              | frequency and voltage shown in the table.                                                         |  |  |  |  |  |
|     |                  |             |                                           |                              |                                                                                                   |  |  |  |  |  |
|     |                  |             |                                           |                              | Nominal Cap. Frequency Voltage                                                                    |  |  |  |  |  |
|     |                  |             |                                           |                              | C≦10μF 1±0.1kHz AC1±0.2V (r.m.s.)                                                                 |  |  |  |  |  |
|     |                  |             |                                           |                              | C>10μF   120±24Hz   AC0.5±0.1V (r.m.s.)                                                           |  |  |  |  |  |
|     |                  | Insulation  | Room                                      | 10,000MΩ or 500MΩ•μF min.    | The insulation resistance should be measured at 25±3 °C with                                      |  |  |  |  |  |
|     |                  | Resistance  | Temperature                               | (Whichever is smaller)       | a DC voltage not exceeding the rated voltage at normal temperatu                                  |  |  |  |  |  |
|     |                  | (I.R.)      | Tomporature                               | (vvinenever ie einanei)      | and humidity and within 2 min. of charging.                                                       |  |  |  |  |  |
|     |                  | ()          |                                           |                              | (Charge/Discharge current ≤ 50mA.)                                                                |  |  |  |  |  |
|     |                  |             | High                                      | 100MΩ or 5MΩ•μF min.         | The insulation resistance should be measured at 150±3 °C with                                     |  |  |  |  |  |
|     |                  |             | Temperature                               | (Whichever is smaller)       | a DC voltage not exceeding the rated voltage at normal temperatu                                  |  |  |  |  |  |
|     |                  |             | remperature                               | (Willeflever is smaller)     | and humidity and within 2 min. of charging.                                                       |  |  |  |  |  |
|     |                  |             |                                           |                              |                                                                                                   |  |  |  |  |  |
|     |                  | Dielectric  | Between                                   | No defects or abnormalities. | (Charge/Discharge current ≤ 50mA.)                                                                |  |  |  |  |  |
|     |                  |             | Terminals                                 | no defects of abriormanties. | The capacitor should not be damaged when DC voltage of 250%                                       |  |  |  |  |  |
|     |                  | Strength    | reminais                                  |                              | of the rated voltage is applied between the terminations for                                      |  |  |  |  |  |
|     |                  |             |                                           |                              | 1 to 5 seconds.                                                                                   |  |  |  |  |  |
|     |                  |             | Terminal To                               |                              | (Charge/Discharge current ≤ 50mA.)                                                                |  |  |  |  |  |
|     |                  |             | External                                  | No defects or abnormalities. | The capacitor is placed in a container with metal                                                 |  |  |  |  |  |
|     |                  |             | Resin                                     |                              | balls of 1mm diameter so that each terminal,                                                      |  |  |  |  |  |
|     |                  |             |                                           |                              | short-circuit is kept approximately 2mm from Approx the helle and 350% of the reted DC voltage is |  |  |  |  |  |
|     |                  |             |                                           |                              | the balls, and 250% of the fated DC voltage is                                                    |  |  |  |  |  |
|     |                  |             |                                           |                              | impressed for 1 to 5 seconds between                                                              |  |  |  |  |  |
|     |                  |             |                                           |                              | capacitor terminals and metal balls.                                                              |  |  |  |  |  |
|     |                  | <u> </u>    | <u> </u>                                  | 1                            | (Charge/Discharge current ≤ 50mA.) ba                                                             |  |  |  |  |  |
| 18  | Terminal Tensile |             | Termination not to be broken or loosened. |                              | As in the figure, fix the capacitor body, apply the force gradually                               |  |  |  |  |  |
|     | Strength         | Strength    |                                           |                              | to each lead in the radial direction of the capacitor until reaching                              |  |  |  |  |  |
|     |                  |             |                                           |                              | 10N and then keep the force applied for 10±1 seconds.                                             |  |  |  |  |  |
|     |                  |             |                                           |                              | <u>'/<del>///</del></u>                                                                           |  |  |  |  |  |
|     |                  |             |                                           |                              |                                                                                                   |  |  |  |  |  |
|     |                  |             |                                           |                              | F <b>]  </b>                                                                                      |  |  |  |  |  |
|     |                  | Dandin -    | Ti                                        |                              |                                                                                                   |  |  |  |  |  |
|     |                  | Bending     | remination no                             | ot to be broken or loosened. | Each lead wire should be subjected to a force of 2.5N and then                                    |  |  |  |  |  |
|     |                  | Strength    |                                           |                              | be bent 90° at the point of egress in one direction.                                              |  |  |  |  |  |
|     |                  |             |                                           |                              | Each wire is then returned to the original position and bent 90°                                  |  |  |  |  |  |
|     | <b>.</b>         |             | 10-0                                      |                              | in the opposite direction at the rate of one bend per 2 to 3 seconds                              |  |  |  |  |  |
| 19  | Capacitance      |             | -55 to 125°C :                            |                              | The capacitance change should be measured after 5min.                                             |  |  |  |  |  |
|     | Temperature      | •           |                                           | within +15/-40%              | at each specified temperature step.                                                               |  |  |  |  |  |
|     | Characteristic   | S           |                                           |                              | Step Temperature(°C)                                                                              |  |  |  |  |  |
|     |                  |             |                                           |                              | 1 25±2                                                                                            |  |  |  |  |  |
|     |                  |             |                                           |                              | 2 -55±3                                                                                           |  |  |  |  |  |
|     |                  |             |                                           |                              | 3 25±2                                                                                            |  |  |  |  |  |
|     |                  |             | 1                                         |                              | 4 150±3                                                                                           |  |  |  |  |  |
|     |                  |             |                                           |                              | 5 25±2                                                                                            |  |  |  |  |  |
|     |                  |             |                                           |                              |                                                                                                   |  |  |  |  |  |
|     |                  |             |                                           |                              | The ranges of capacitance change compared with the above                                          |  |  |  |  |  |
|     |                  |             |                                           |                              | 25°C value over the temperature ranges shown in the table                                         |  |  |  |  |  |
|     |                  |             |                                           |                              | should be within the specified ranges.                                                            |  |  |  |  |  |
|     |                  |             | 1                                         |                              | •Pretreatment                                                                                     |  |  |  |  |  |
|     |                  |             | 1                                         |                              | Perform the heat treatment at 150+0/-10°C for 60±5 min and                                        |  |  |  |  |  |
|     |                  |             |                                           |                              | Choin the fleat treatment at 15010/10 0 for 00±5 min and                                          |  |  |  |  |  |
|     |                  |             |                                           |                              | then let sit for 24±2 hours at *room condition.                                                   |  |  |  |  |  |

# 6. Packing specification

•Bulk type (Packing style code : B)

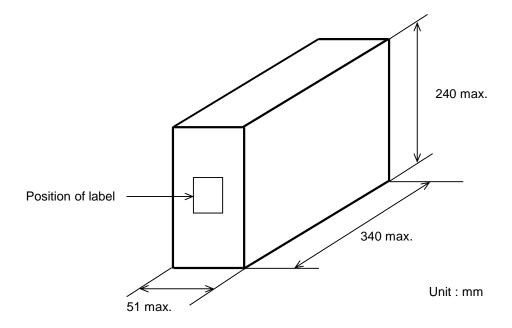
The size of packing case and packing way

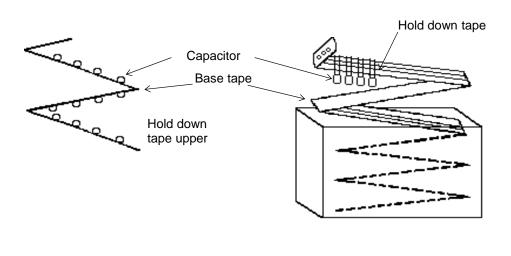


The number of packing =  $^{*1}$  Packing quantity  $\times$   $^{*2}$  n

\*1 : Please refer to [Part number list].

\*2 : Standard n = 20 (bag)


# Note)

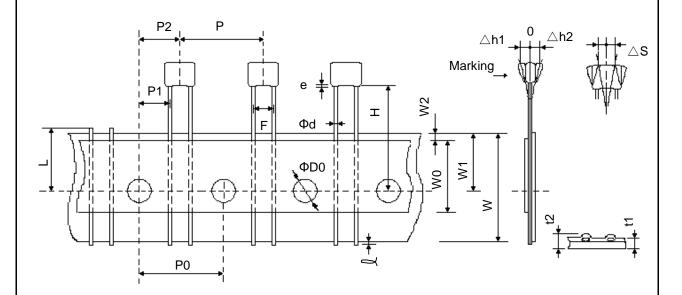

The outer package and the number of outer packing be changed by the order getting amount.

•Ammo pack taping type (Packing style code : A)

A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.

The size of packing case and packing way






# 7. Taping specification

# 7-1. Dimension of capacitors on tape

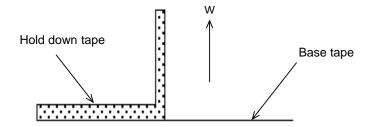
Straight taping type < Lead Style : DB >

Pitch of component 12.7mm / Lead spacing 2.5mm



Unit: mm

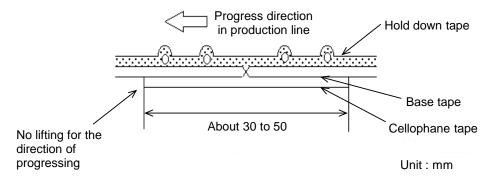
| Item                                             | Code | Dimensions   | Remarks                             |
|--------------------------------------------------|------|--------------|-------------------------------------|
| Pitch of component                               | Р    | 12.7+/-1.0   |                                     |
| Pitch of sprocket hole                           | P0   | 12.7+/-0.2   |                                     |
| Lead spacing                                     | F    | 2.5+0.4/-0.2 |                                     |
| Length from hole center to component center      |      | 6.35+/-1.3   | Deviation of progress direction     |
| Length from hole center to lead                  | P1   | 5.1+/-0.7    |                                     |
| Deviation along tape, left or right defect       | ΔS   | 0+/-2.0      | They include deviation by lead bend |
| Carrier tape width                               | W    | 18.0+/-0.5   |                                     |
| Position of sprocket hole                        | W1   | 9.0+0/-0.5   | Deviation of tape width direction   |
| Lead distance between reference and bottom plane | Н    | 16.0+/-0.5   |                                     |
| Protrusion length                                | l    | 0.5 max.     |                                     |
| Diameter of sprocket hole                        | ФD0  | 4.0+/-0.1    |                                     |
| Lead diameter                                    | Фd   | 0.5+/-0.05   |                                     |
| Total tape thickness                             | t1   | 0.6+/-0.3    | They include hold down tape         |
| Total thickness of tape and lead wire            | t2   | 1.5 max.     | thickness                           |
| Daviation agrees tape                            | ∆h1  | 1.0 max.     |                                     |
| Deviation across tape                            | ∆ h2 | 1.0 Illax.   |                                     |
| Portion to cut in case of defect                 | L    | 11.0+0/-1.0  |                                     |
| Hold down tape width                             | W0   | 9.5 min.     |                                     |
| Hold down tape position                          | W2   | 1.5+/-1.5    |                                     |
| Coating extension on lead                        | е    | 1.5 max.     |                                     |


Inside crimp taping type < Lead Style : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm

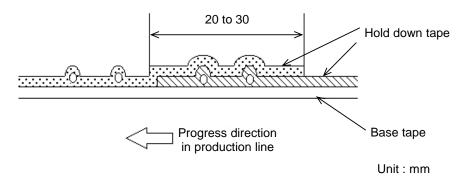


| Item                                             | Code | Dimensions       | Remarks                             |
|--------------------------------------------------|------|------------------|-------------------------------------|
| Pitch of component                               | Р    | 12.7+/-1.0       |                                     |
| Pitch of sprocket hole                           | P0   | 12.7+/-0.2       |                                     |
| Lead spacing                                     | F    | 5.0+0.6/-0.2     |                                     |
| Length from hole center to component center      |      | 6.35+/-1.3       | Deviation of progress direction     |
| Length from hole center to lead                  | P1   | 3.85+/-0.7       |                                     |
| Deviation along tape, left or right defect       | ΔS   | 0+/-2.0          | They include deviation by lead bend |
| Carrier tape width                               | W    | 18.0+/-0.5       |                                     |
| Position of sprocket hole                        | W1   | 9.0+0/-0.5       | Deviation of tape width direction   |
| Lead distance between reference and bottom plane | H0   | 16.0+/-0.5       |                                     |
| Protrusion length                                | l    | 0.5 max.         |                                     |
| Diameter of sprocket hole                        | ФD0  | 4.0+/-0.1        |                                     |
| Lead diameter                                    | Фd   | 0.5+/-0.05       |                                     |
| Total tape thickness                             | t1   | 0.6+/-0.3        | They include hold down tape         |
| Total thickness of tape and lead wire            | t2   | 1.5 max.         | thickness                           |
| Doviation across tapo                            | ∆h1  | 2.0 max. (Di     | mension code : W)                   |
| Deviation across tape                            | Δh2  | 1.0 max. (ex     | ccept as above)                     |
| Portion to cut in case of defect                 | L    | 11.0+0/-1.0      |                                     |
| Hold down tape width                             | W0   | 9.5 min.         |                                     |
| Hold down tape position                          | W2   | 1.5+/-1.5        |                                     |
| Coating extension on lead                        | е    | Up to the end of | crimp                               |

# 7-2. Splicing way of tape


1) Adhesive force of tape is over 3N at test condition as below.




# 2) Splicing of tape

- (a) When base tape is spliced
  - •Base tape shall be spliced by cellophane tape.

(Total tape thickness shall be less than 1.05mm.)



- (b) When hold down tape is spliced
- •Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)



- (c) When both tape are spliced
  - •Base tape and hold down tape shall be spliced with splicing tape.
- 3) Missing components
  - •There should be no consecutive missing of more than three components.
  - •The number of missing components should be not more than 0.5 % of total components that should be present in a Ammo pack.