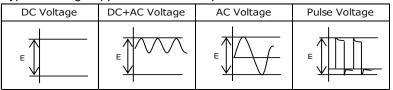
|                  | Reference Specification                                                   |
|------------------|---------------------------------------------------------------------------|
|                  |                                                                           |
|                  |                                                                           |
| Lea              | aded MLCC for Consumer Electronics & Industrial Equipment<br>RDE Series   |
|                  |                                                                           |
|                  |                                                                           |
|                  |                                                                           |
|                  |                                                                           |
|                  |                                                                           |
| Product specific | cations in this catalog are as of Apr. 2024, and are subject to change or |
| obsolescence w   |                                                                           |
|                  |                                                                           |
|                  |                                                                           |
|                  |                                                                           |
|                  |                                                                           |
|                  |                                                                           |
|                  |                                                                           |

Please refer to the product information page for more information on ceramic capacitors.→ Ceramic capacitor product information Various data can be obtained directly from the product search.  $\rightarrow$  <u>Product search (SMD)</u> / <u>Product search (Lead Type)</u>


# $\triangle$ caution

## **1. OPERATING VOLTAGE**

Do not apply a voltage to the capacitor that exceeds the rated voltage as called out in the specifications.

- 1-1. Applied voltage between the terminals of a capacitor shall be less than or equal to the rated voltage.
- (1) When AC voltage is superimposed on DC voltage, the zero-to-peak voltage shall not exceed the rated DC voltage. When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage.
- (2) Abnormal voltages (surge voltage, static electricity, pulse voltage, etc.) shall not exceed the rated DC voltage.

Typical Voltage Applied to the DC Capacitor



(E: Maximum possible applied voltage.)

1-2. Influence of over voltage

Over voltage that is applied to the capacitor may result in an electrical short circuit caused by the breakdown of the internal dielectric layers. The time duration until breakdown depends on the applied voltage and the ambient temperature.

Use a safety standard certified capacitor in a power supply input circuit (AC filter), as it is also necessary to consider the withstand voltage and impulse withstand voltage defined for each device.

## 2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the selfgenerated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C.

Since the self-heating is low in the Class 1 capacitors (Temp.Char.: C0G,U2J,X8G, etc.), the allowable power becomes extremely high compared to the Class 2 capacitors.

However, when a load with self-heating of 20°C is applied at the rated voltage, the allowable power may be exceeded. Please confirm that there is no rising trend of the capacitor's surface temperature and that the surface temperature of the capacitor does not exceed the maximum operating temperature.

Excessive generation of heat may cause deterioration of the characteristics and reliability of the capacitor.

When measuring the self-heating temperature, be aware that accurate measurement may not be possible due to the following effects.

- The heat generated by other parts
- Air flow such as convection and cooling fans
- Temperature sensor used for measuring surface temperature of capacitor In the case using a thermocouple, it is recommended that use a K thermocouple of Φ0.1mm with less heat capacity.

## 3. FAIL-SAFE

Capacitors that are cracked by dropping or bending of the board may cause deterioration of the insulation resistance, and result in a short.

If the circuit being used may cause an electrical shock, smoke or fire when a capacitor is shorted, be sure to install fail-safe functions, such as a fuse, to prevent secondary accidents.

## 4. OPERATING AND STORAGE ENVIRONMENT

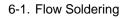
The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months. Use capacitors within 6 months after delivered. Check the solderability after 6 months or more. Due to moisture condensation caused by rapid humidity changes, or the photochemical change caused by direct sunlight on the terminal electrodes, the solderability and electrical performance may deteriorate. Do not store capacitors under direct sunlight or in high humidity conditions.

## 5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

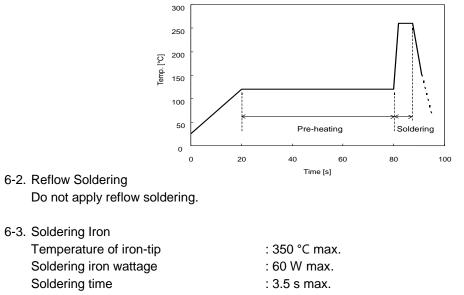
5-1. Mechanical shock due to being dropped may cause damage or a crack in the dielectric material of the capacitor.

Do not use a dropped capacitor because the quality and reliability may be deteriorated.


5-2. Excessive shock or vibration may cause to fatigue destruction of lead wires mounted on the circuit board. If necessary, take measures to hold a capacitor on the circuit boards by adhesive, molding resin or coating and other.

Please confirm there is no influence of holding measures on the product with an intended equipment.

#### 6. SOLDERING


When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

Please verify that the soldering process does not affect the quality of capacitors.



Soldering temperature Soldering time Preheating temperature Preheating time : 260 °C max. : 7.5 s max. : 120 °C max. : 60 s max.

[Standard Condition for Flow Soldering]



## 7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

#### 8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

#### 9. LIMITATION OF APPLICATIONS

The products listed in the specification(hereinafter the product(s) is called as the "Product(s)") are designed and manufactured for applications specified in the specification. (hereinafter called as the "Specific Application")

We shall not warrant anything in connection with the Products including fitness, performance, adequateness, safety, or quality, in the case of applications listed in from (1) to (11) written at the end of this precautions, which may generally require high performance, function, quality, management of production or safety.

Therefore, the Product shall be applied in compliance with the specific application.

WE DISCLAIM ANY LOSS AND DAMAGES ARISING FROM OR IN CONNECTION WITH THE PRODUCTS INCLUDING BUT NOT LIMITED TO THE CASE SUCH LOSS AND DAMAGES CAUSED BY THE UNEXPECTED ACCIDENT, IN EVENT THAT (i) THE PRODUCT IS APPLIED FOR THE PURPOSE WHICH IS NOT SPECIFIED AS THE SPECIFIC APPLICATION FOR THE PRODUCT, AND/OR (ii) THE PRODUCT IS APPLIED FOR ANY FOLLOWING APPLICATION PURPOSES FROM (1) TO (11) (EXCEPT THAT SUCH APPLICATION PURPOSE IS UNAMBIGUOUSLY SPECIFIED AS SPECIFIC APPLICATION FOR THE PRODUCT IN OUR CATALOG SPECIFICATION FORMS, DATASHEETS, OR OTHER DOCUMENTS OFFICIALLY ISSUED BY US\*)

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment
- 7. Traffic control equipment
- 8. Disaster prevention/security equipment
- 9. Industrial data-processing equipment
- 10. Combustion/explosion control equipment
- 11. Equipment with complexity and/or required reliability equivalent to the applications listed in the above.

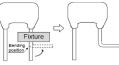
For exploring information of the Products which will be compatible with the particular purpose other than those specified in the specification, please contact our sales offices, distribution agents, or trading companies with which you make a deal, or via our web contact form.

Contact form: https://www.murata.com/contactform

\*We may design and manufacture particular Products for applications listed in (1) to (11). Provided that, in such case we shall unambiguously specify such Specific Application in the specification without any exception.

Therefore, any other documents and/or performances, whether exist or non-exist, shall not be deemed as the evidence to imply that we accept the applications listed in (1) to (11).

### NOTICE


#### 1. CLEANING

- 1-1. Please evaluate the capacitor using actual cleaning equipment and conditions to confirm the quality, and select the solvent for cleaning.
- 1-2. Unsuitable cleaning may leave residual flux or other foreign substances, causing deterioration of electrical characteristics and the reliability of the capacitors.
- 1-3. To perform ultrasonic cleaning, observe the following conditions.
  Rinse bath capacity : Output of 20 watts per liter or less.
  Rinsing time : 5 min maximum.
  Do not vibrate the PCB/PWB directly.
  Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

#### 2. SOLDERING AND MOUNTING

- 2-1. Insert the lead wire into the PCB with a distance appropriate to the lead space. If the lead wires are inserted into different spacing holes, cracks may occur in the outer resin or the internal element.
- 2-2. When bending the lead wire, excessive force applied to the capacitor body may cause cracks in the outer resin or the internal element. Hold the lead wire closer to the capacitor body than the lead wire bending position with the fixture, then bend it.

(See the right figure)



- 2-3. When cutting and clinching the lead wire, do not apply excessive force to the capacitor body.
- 2-4. When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.

#### 3. CAPACITANCE CHANGE OF CAPACITORS

Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

#### 4. CHARACTERISTICS EVALUATION IN THE ACTUAL SYSTEM

- 4-1. Evaluate the capacitor in the actual system, to confirm that there is no problem with the performance and specification values in a finished product before using.
- 4-2. Since a voltage dependency and temperature dependency exists in the capacitance of Class 2 ceramic capacitors, the capacitance may change depending on the operating conditions in the actual system. Therefore, be sure to evaluate the various characteristics, such as the leakage current and noise absorptivity, which will affect the capacitance value of the capacitor.
- 4-3. In addition, voltages exceeding the predetermined surge may be applied to the capacitor by the inductance in the actual system.

Evaluate the surge resistance in the actual system as required.

4-4. When using Class 2 ceramic capacitors in AC or pulse circuits, the capacitor itself vibrates at specific frequencies and noise may be generated. Moreover, when the mechanical vibration or shock is added to capacitor, noise may occur.

## 

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this product specification.

#### 1. Application

This product specification is applied to Leaded MLCC RDE series.

1.Specific applications:

• Consumer Equipment: Products that can be used in consumer equipment such as home appliances, audio/visual equipment, communication equipment, information equipment, office equipment, and household robotics, and whose functions are not directly related to the protection of human life and property.

•Industrial Equipment: Products that can be used in industrial equipment such as base stations, manufacturing equipment, industrial robotics equipment, and measurement equipment, and whose functions do not directly relate to the protection of human life and property.

•Medial Equipment [GHTF A/B/C] except for Implant Equipment: Products suitable for use in medical devices designated under the GHTF international classifications as Class A or Class B (the functions of which are not directly involved in protection of human life or property) or in medical devices other than implants designated under the GHTF international classifications as Class C (the malfunctioning of which is considered to pose a comparatively high risk to the human body).

•Automotive infotainment/comfort equipment: Products that can be used for automotive equipment such as car navigation systems and car audio systems that do not directly relate to human life and whose structure, equipment, and performance are not specifically required by law to meet technical standards for safety assurance or environmental protection.

2. Unsuitable Application: Applications listed in "Limitation of applications" in this product specification.

2. Rating

Part Number Configuration

| ex.)  |                 |         |             |             |           |       |               |         |  |
|-------|-----------------|---------|-------------|-------------|-----------|-------|---------------|---------|--|
| RD    | 5C              | 2E      | 103         | J           | 2         | M1    | H03           | A       |  |
| Serie | es Temperature  | Rated   | Capacitance | Capacitance | Dimension | Lead  | Individual    | Package |  |
|       | Characteristics | Voltage |             | Tolerance   | (LxW)     | Style | Specification |         |  |

Temperature Characteristics

|    | Code       | Temp. Char. | Temp. Range  | Temp.coef.     | Standard<br>Temp. | Operating<br>Temp. Range |
|----|------------|-------------|--------------|----------------|-------------------|--------------------------|
|    | 5C         | C0G         | -55∼25°C     | 0+30/-72ppm/°C | 25°C              | -55∼125°C                |
| 50 | (EIA code) | 25∼125°C    | 0+/-30ppm/°C | 25 0           | -55**125 C        |                          |

Rated Voltage

| Code | Rated voltage |
|------|---------------|
| 2E   | DC250V        |
| 2J   | DC630V        |

Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF. ex.) In case of 103.

 $10 \times 10^3 = 10000 \text{ pF}$ 

Capacitance Tolerance

| <br>paelanee relera |                       |
|---------------------|-----------------------|
| Code                | Capacitance Tolerance |
| J                   | +/-5%                 |

- Dimension (LxW) Please refer to [ Part number list ].
- Lead Style

\*Lead wire is "solder coated CP wire".

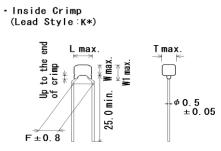
| Code | Lead Style               | Lead spacing (mm) |
|------|--------------------------|-------------------|
| K1   | Inside crimp type        | 5.0+/-0.8         |
| M1   | Inside crimp taping type | 5.0+0.6/-0.2      |

Individual Specification
 Murata's control code.

Please refer to [ Part number list ].

Package

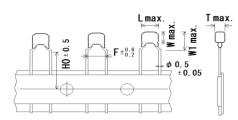
| Code     Package       A     Taping type of Ammo |   |           |  |  |  |  |  |  |
|--------------------------------------------------|---|-----------|--|--|--|--|--|--|
|                                                  | А |           |  |  |  |  |  |  |
|                                                  | B | Bulk type |  |  |  |  |  |  |


3. Marking

| Temp. char.<br>Capacitance |   | Letter code : A (C0G Char.)<br>Actual numbers (Less than 100pF) |
|----------------------------|---|-----------------------------------------------------------------|
|                            |   | 3 digit numbers (100pF and over)                                |
| Capacitance tolerance      | : | Code                                                            |
| Rated voltage              | : | Letter code : 4 (DC250V. Except dimension code : 1)             |
|                            |   | Letter code : 7 (DC630V. Except dimension code : 1)             |
|                            |   | Letter code : A (DC1000V.)                                      |
| Company name code          | : | Abbreviation : 🚱 (Except dimension code : 1)                    |

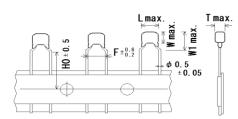
| ( | F | x        | ) |
|---|---|----------|---|
|   | _ | <i>~</i> |   |

| Rated voltage | DC250V                   | DC630V                   | DC1000V                  |
|---------------|--------------------------|--------------------------|--------------------------|
| 1             | A<br>102J                | A<br>102J                | _                        |
| 2             | Cm <sup>223</sup><br>J4A | Cm <sup>472</sup><br>J7A | Cm <sup>102</sup><br>JAA |


#### 4. Part number list



| Customer    |                    |      | DC<br>Rated  |         | Cap. | Dimension (mm) Dimen |     |     |     |      |                     | Pa        |
|-------------|--------------------|------|--------------|---------|------|----------------------|-----|-----|-----|------|---------------------|-----------|
| Part Number | Murata Part Number | T.C. | Volt.<br>(V) | Cap.    | Tol. | L                    | W   | W1  | F   | т    | (LxW)<br>Lead Style | qt<br>(po |
|             | RDE5C2E100J2K1H03B | C0G  | 250          | 10pF    | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E120J2K1H03B | C0G  | 250          | 12pF    | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E150J2K1H03B | C0G  | 250          | 15pF    | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E180J2K1H03B | C0G  | 250          | 18pF    | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E220J2K1H03B | C0G  | 250          | 22pF    | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E270J2K1H03B | C0G  | 250          | 27pF    | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E330J2K1H03B | C0G  | 250          | 33pF    | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E390J2K1H03B | C0G  | 250          | 39pF    | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E470J2K1H03B | C0G  | 250          | 47pF    | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E560J2K1H03B | C0G  | 250          | 56pF    | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E680J2K1H03B | C0G  | 250          | 68pF    | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E820J2K1H03B | C0G  | 250          | 82pF    | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E101J2K1H03B | C0G  | 250          | 100pF   | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E121J2K1H03B | C0G  | 250          | 120pF   | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E151J2K1H03B | C0G  | 250          | 150pF   | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E181J2K1H03B | C0G  | 250          | 180pF   | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E221J2K1H03B | C0G  | 250          | 220pF   | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E271J2K1H03B | C0G  | 250          | 270pF   | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E331J2K1H03B | C0G  | 250          | 330pF   | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E391J2K1H03B | C0G  | 250          | 390pF   | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E471J2K1H03B | C0G  | 250          | 470pF   | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E561J2K1H03B | C0G  | 250          | 560pF   | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E681J2K1H03B | C0G  | 250          | 680pF   | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E821J2K1H03B | C0G  | 250          | 820pF   | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E102J2K1H03B | C0G  | 250          | 1000pF  | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E122J2K1H03B | C0G  | 250          | 1200pF  | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E152J2K1H03B | C0G  | 250          | 1500pF  | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E182J2K1H03B | C0G  | 250          | 1800pF  | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E222J2K1H03B | C0G  | 250          | 2200pF  | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E272J2K1H03B | C0G  | 250          | 2700pF  | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E332J2K1H03B | C0G  | 250          | 3300pF  | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E392J2K1H03B | C0G  | 250          | 3900pF  | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E472J2K1H03B | C0G  | 250          | 4700pF  | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E562J2K1H03B | C0G  | 250          | 5600pF  | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E682J2K1H03B | C0G  | 250          | 6800pF  | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E822J2K1H03B | C0G  | 250          | 8200pF  | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2E103J2K1H03B | C0G  | 250          | 10000pF | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2J100J2K1H03B | C0G  | 630          | 10pF    | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2J120J2K1H03B | C0G  | 630          | 12pF    | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |
|             | RDE5C2J150J2K1H03B | C0G  | 630          | 15pF    | ±5%  | 5.5                  | 4.0 | 6.0 | 5.0 | 3.15 | 2K1                 | 5         |


| - Inside Cr<br>(Lead Styl |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |              |        |      |     |      |          |     |      |                     |             |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|--------|------|-----|------|----------|-----|------|---------------------|-------------|
| F ± 0.8                   | L max.<br>T max. | 05   |              |        |      |     |      |          |     |      | Unit : mm           |             |
| Customer                  | Murete Dort Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | то   | DC<br>Rated  | Can    | Cap. |     | Dime | ension ( | mm) |      | Dimension           | Pac         |
| Part Number               | Murata Part Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T.C. | Volt.<br>(V) | Cap.   | Tol. | L   | W    | W1       | F   | Т    | (LxW)<br>Lead Style | qty<br>(pcs |
|                           | RDE5C2J180J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 18pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J220J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 22pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J270J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 27pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J330J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 33pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J390J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 39pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J470J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 47pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J560J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 56pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J680J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 68pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J820J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 82pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J101J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 100pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J121J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 120pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J151J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 150pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J181J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 180pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J221J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 220pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J271J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 270pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J331J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 330pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J391J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 390pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J471J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 470pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J561J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 560pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J681J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 680pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J821J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 820pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J102J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 1000pF | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J122J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 1200pF | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J152J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0G  | 630          | 1500pF | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C0G  | 630          | 1800pF | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                 | 50          |
|                           | RDE5C2J182J2K1H03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000  | 030          | 100001 | 1070 | 5.5 | 1.0  | 0.0      | 0.0 | 00   |                     |             |

・Inside Crimp Taping (Lead Style:M\*)



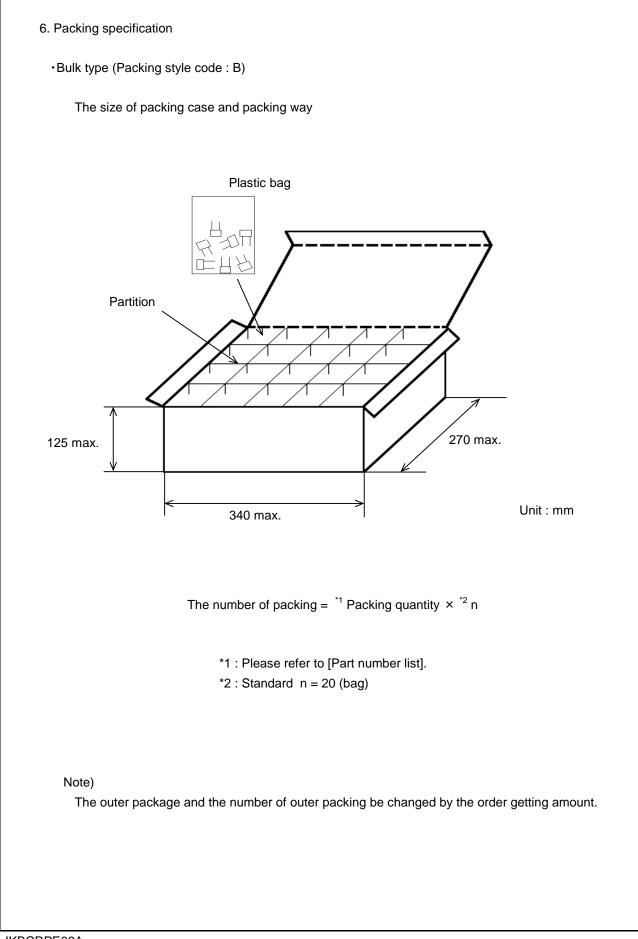
| Customer    |                    |      | DC<br>Rated  |         | Cap. | Dimension (mm) |     |     |     |      |      | Dimension           | Pac       |
|-------------|--------------------|------|--------------|---------|------|----------------|-----|-----|-----|------|------|---------------------|-----------|
| Part Number | Murata Part Number | T.C. | Volt.<br>(V) | Cap.    | Tol. | L              | W   | W1  | F   | т    | H/H0 | (LxW)<br>Lead Style | qt<br>(po |
|             | RDE5C2E100J2M1H03A | C0G  | 250          | 10pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E120J2M1H03A | C0G  | 250          | 12pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E150J2M1H03A | C0G  | 250          | 15pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E180J2M1H03A | C0G  | 250          | 18pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E220J2M1H03A | C0G  | 250          | 22pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E270J2M1H03A | C0G  | 250          | 27pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E330J2M1H03A | C0G  | 250          | 33pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E390J2M1H03A | C0G  | 250          | 39pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E470J2M1H03A | C0G  | 250          | 47pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E560J2M1H03A | C0G  | 250          | 56pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E680J2M1H03A | C0G  | 250          | 68pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E820J2M1H03A | C0G  | 250          | 82pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E101J2M1H03A | C0G  | 250          | 100pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E121J2M1H03A | C0G  | 250          | 120pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E151J2M1H03A | C0G  | 250          | 150pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E181J2M1H03A | C0G  | 250          | 180pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E221J2M1H03A | C0G  | 250          | 220pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E271J2M1H03A | C0G  | 250          | 270pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E331J2M1H03A | C0G  | 250          | 330pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E391J2M1H03A | C0G  | 250          | 390pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E471J2M1H03A | C0G  | 250          | 470pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E561J2M1H03A | C0G  | 250          | 560pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E681J2M1H03A | C0G  | 250          | 680pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E821J2M1H03A | C0G  | 250          | 820pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E102J2M1H03A | C0G  | 250          | 1000pF  | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E122J2M1H03A | C0G  | 250          | 1200pF  | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E152J2M1H03A | C0G  | 250          | 1500pF  | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E182J2M1H03A | C0G  | 250          | 1800pF  | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E222J2M1H03A | C0G  | 250          | 2200pF  | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E272J2M1H03A | C0G  | 250          | 2700pF  | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E332J2M1H03A | C0G  | 250          | 3300pF  | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E392J2M1H03A | C0G  | 250          | 3900pF  | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E472J2M1H03A | C0G  | 250          | 4700pF  | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E562J2M1H03A | C0G  | 250          | 5600pF  | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E682J2M1H03A | C0G  | 250          | 6800pF  | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E822J2M1H03A | C0G  | 250          | 8200pF  | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2E103J2M1H03A | C0G  | 250          | 10000pF | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2J100J2M1H03A | C0G  | 630          | 10pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2J120J2M1H03A | C0G  | 630          | 12pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |
|             | RDE5C2J150J2M1H03A | C0G  | 630          | 15pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                 | 20        |

・Inside Crimp Taping (Lead Style:M\*)



|             | _                  |      |              |          |      |                |     |     |     |      |      | Unit : mm          |               |
|-------------|--------------------|------|--------------|----------|------|----------------|-----|-----|-----|------|------|--------------------|---------------|
| Customer    | Murata Part Number | T.C. | DC<br>Rated  | ated Can | Cap. | Dimension (mm) |     |     |     |      |      | Dimension<br>(LxW) |               |
| Part Number |                    | 1.0. | Volt.<br>(V) | oup.     | Tol. | L              | w   | W1  | F   | Т    | H/H0 | Lead Style         | qty.<br>(pcs) |
|             | RDE5C2J180J2M1H03A | C0G  | 630          | 18pF     | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 200           |
|             | RDE5C2J220J2M1H03A | C0G  | 630          | 22pF     | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J270J2M1H03A | C0G  | 630          | 27pF     | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J330J2M1H03A | C0G  | 630          | 33pF     | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J390J2M1H03A | C0G  | 630          | 39pF     | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J470J2M1H03A | C0G  | 630          | 47pF     | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J560J2M1H03A | C0G  | 630          | 56pF     | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J680J2M1H03A | C0G  | 630          | 68pF     | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J820J2M1H03A | C0G  | 630          | 82pF     | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J101J2M1H03A | C0G  | 630          | 100pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J121J2M1H03A | C0G  | 630          | 120pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J151J2M1H03A | C0G  | 630          | 150pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J181J2M1H03A | C0G  | 630          | 180pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J221J2M1H03A | C0G  | 630          | 220pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J271J2M1H03A | C0G  | 630          | 270pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J331J2M1H03A | C0G  | 630          | 330pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J391J2M1H03A | C0G  | 630          | 390pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J471J2M1H03A | C0G  | 630          | 470pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J561J2M1H03A | C0G  | 630          | 560pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J681J2M1H03A | C0G  | 630          | 680pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J821J2M1H03A | C0G  | 630          | 820pF    | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J102J2M1H03A | C0G  | 630          | 1000pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J122J2M1H03A | C0G  | 630          | 1200pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J152J2M1H03A | C0G  | 630          | 1500pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J182J2M1H03A | C0G  | 630          | 1800pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |
|             | RDE5C2J222J2M1H03A | C0G  | 630          | 2200pF   | ±5%  | 5.5            | 4.0 | 6.0 | 5.0 | 3.15 | 16.0 | 2M1                | 20            |

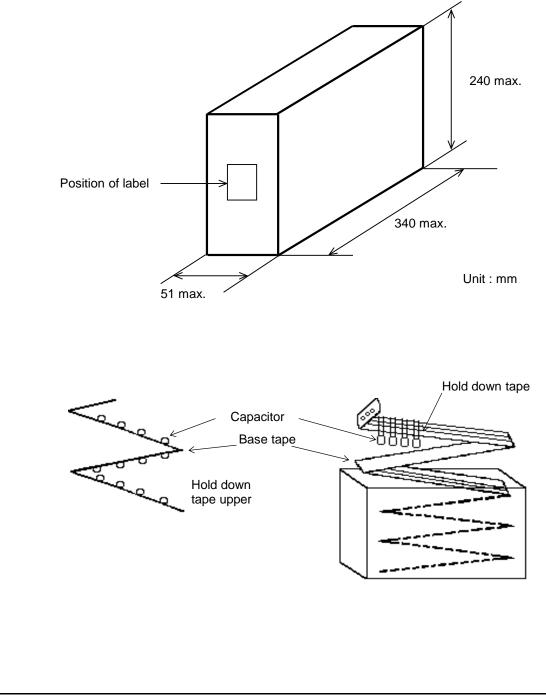
| 5.Spe | cification                                                                    |                                                              | Referen                                                                                         | oc only                                                                                                                                                                                                                           |                                                    |                                                                |                                                              |                                                                  |                                                                    |  |  |
|-------|-------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| No.   |                                                                               | t Item                                                       | Specification                                                                                   | Test Method (Ref. Standard:JIS C 5101(all parts), IEC60384(all parts))                                                                                                                                                            |                                                    |                                                                |                                                              |                                                                  |                                                                    |  |  |
| 1     | Appearance                                                                    |                                                              | No defects or abnormalities.                                                                    | Visual inspection.                                                                                                                                                                                                                |                                                    |                                                                |                                                              |                                                                  |                                                                    |  |  |
|       | Dimension and                                                                 | b                                                            | Within the specified dimensions and<br>Marking                                                  | Visual inspection, Using Caliper.                                                                                                                                                                                                 |                                                    |                                                                |                                                              |                                                                  |                                                                    |  |  |
|       | Marking<br>Dielectric Between<br>Strength Terminals                           |                                                              |                                                                                                 |                                                                                                                                                                                                                                   | ween th<br>scharge<br>Rate                         | ne termina<br>e current ≦<br>d voltage                         | tions for<br>50mA.)                                          | 1 to 5 seco<br>Test volta                                        | ge                                                                 |  |  |
|       |                                                                               | Tourisel To                                                  |                                                                                                 |                                                                                                                                                                                                                                   | D(<br>D                                            | C250V<br>C630V<br>C1kV                                         | 150% (<br>130% (                                             | of the rate<br>of the rate<br>of the rate                        | d voltage<br>d voltage                                             |  |  |
|       |                                                                               | Terminal To<br>External Resin                                | No defects or abnormalities.                                                                    | so that each                                                                                                                                                                                                                      | n termin<br>nd volta<br>rminals                    | nal, short-c<br>age in Table<br>s and meta<br>e current $\leq$ | ircuit, is k<br>e is impre<br>l balls.<br>50mA.)             | kept appro                                                       | balls of 1mm diameter<br>ximately 2mm from<br>to 5 seconds between |  |  |
|       | to endertie o                                                                 | Defense                                                      | 40 000140 va 500140 v 5 min                                                                     | The inclusio                                                                                                                                                                                                                      | L                                                  | Rated vo<br>DC25<br>DC630V•I                                   | 0V<br>DC1kV                                                  | DC50<br>DC130                                                    |                                                                    |  |  |
| 4     | Insulation<br>Resistance<br>(I.R.)                                            | Between<br>Terminals                                         | 10,000MΩ or 500MΩ∙μF min.<br>(Whichever is smaller)                                             | The insulation resistance should be measured with DC500 $\pm$ 50V (DC250 $\pm$ 25V in case of rated voltage : DC250V) at normal temperature and humidity and within 2 minutes of charging (Charge/Discharge current $\leq$ 50mA.) |                                                    |                                                                |                                                              |                                                                  |                                                                    |  |  |
| 5     | Capacitance                                                                   |                                                              | Within the specified tolerance.                                                                 | The capacitance, Q should be measured at 25°C at the frequency and voltage shown in the table.                                                                                                                                    |                                                    |                                                                |                                                              |                                                                  |                                                                    |  |  |
| 6     | Q                                                                             |                                                              | $30pF \leq C : Q \geq 1,000$ $30pF > C : Q \geq 400+20C$                                        | 1 –                                                                                                                                                                                                                               | Nomir<br>C≦1                                       | nal Cap.<br>1000pF<br>1000pF                                   | Freq<br>1±0.                                                 | uency<br>2MHz<br>.2kHz                                           | Voltage<br>AC0.5 to 5V(r.m.s.)<br>AC1±0.2V(r.m.s.)                 |  |  |
| _     |                                                                               |                                                              | C : Nominal Capacitance (pF)                                                                    |                                                                                                                                                                                                                                   |                                                    |                                                                |                                                              |                                                                  |                                                                    |  |  |
| 7     | <ul> <li>Capacitance</li> <li>Temperature</li> <li>Characteristics</li> </ul> |                                                              | Within the specified Tolerance.<br>25°C to 125°C : 0±30ppm/°C<br>-55°C to 25°C : 0+30/-72ppm/°C | The capacita<br>minutes at e<br>The tempera<br>capacitance<br>When cyclin<br>1 through 5                                                                                                                                          | each sp<br>ature c<br>e meas<br>ng the t<br>(-55°C | coefficient is<br>ured in step<br>temperature<br>to 125°C)     | nperature<br>s determi<br>o 3 as a r<br>e sequen<br>the capa | e stage.<br>ned using<br>reference.<br>tially from<br>citance sh | the                                                                |  |  |
|       |                                                                               |                                                              |                                                                                                 |                                                                                                                                                                                                                                   |                                                    | Step<br>1<br>2<br>3<br>4<br>5                                  | -                                                            | mperatur<br>25±2<br>-55±3<br>25±2<br>125±3<br>25±2               | e(°C)                                                              |  |  |
| 8     | Terminal<br>Strength                                                          | Tensile<br>Strength                                          | Termination not to be broken or loosened.                                                       | As in the fig<br>apply the for<br>lead in the ra<br>capacitor un<br>keep applied                                                                                                                                                  | rce gra<br>adial d<br>ntil read                    | adually to ea<br>lirection of t<br>ching 10N a                 | ach<br>the<br>and then                                       |                                                                  |                                                                    |  |  |
|       |                                                                               | Bending Termination not to be broken or loosened<br>Strength |                                                                                                 | Each lead w<br>2.5N and the<br>one direction<br>original posi<br>direction at t                                                                                                                                                   | en be l<br>n. Eacl<br>ition ar                     | bent 90° at<br>h wire is th<br>nd bent 90°                     | the point<br>en return<br>in the op                          | t of egress<br>ed to the<br>oposite                              | in                                                                 |  |  |
| 9     | Vibration Appearance                                                          |                                                              | No defects or abnormalities.                                                                    | The capacito                                                                                                                                                                                                                      | or shou                                            | uld be subj                                                    | ected to a                                                   | a simple                                                         |                                                                    |  |  |
|       | Resistance                                                                    | Capacitance<br>Q                                             | Within the specified tolerance.<br>$30pF \leq C : Q \geq 1,000$<br>$30pF > C : Q \geq 400+20C$  | harmonic me<br>the frequence<br>approximate<br>range, from                                                                                                                                                                        | cy bein<br>e limits<br>10Hz 1                      | ng varied ur<br>of 10Hz ar<br>to 55Hz an                       | niformly b<br>nd 55Hz.<br>d return t                         | etween the<br>The freque<br>o 10Hz, sh                           | e<br>ency<br>nall be                                               |  |  |
|       |                                                                               |                                                              | C : Nominal Capacitance (pF)                                                                    | traversed in<br>shall be app<br>mutually per                                                                                                                                                                                      | lied for                                           | r a period c                                                   | of 2 hours                                                   | in each 3                                                        |                                                                    |  |  |


#### Reference only

#### Reference only

|          |                      | Specification                           | Te                                                                      | est Method                                                          | I (Ref. Standar                                                                | d:JIS C 5101                                                                                | I (all parts), IEC                                                                          | 60384(all part                                                                              |  |  |
|----------|----------------------|-----------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|
| ability  |                      | Solder is deposited on unintermittently | The terminal of capacitor is dipped into a solution of rosin            |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          |                      | immersed portion in axial direction     | ethand                                                                  | ethanol (25% rosin in weight propotion).                            |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          |                      | covering 3/4 or more in circumferential | Immer                                                                   | se in solde                                                         | er solution for 2                                                              | 2±0.5 second                                                                                | ls.                                                                                         |                                                                                             |  |  |
|          |                      | direction of lead wires.                | In both                                                                 | n cases the                                                         | e depth of dipp                                                                | oing is up to a                                                                             | about 1.5 to 2m                                                                             | m                                                                                           |  |  |
|          |                      |                                         | from t                                                                  | ne termina                                                          | l body.                                                                        |                                                                                             |                                                                                             |                                                                                             |  |  |
|          |                      |                                         | Temp.                                                                   | of solder                                                           | : 245±5°C (Sr                                                                  | n-3.0Ag-0.5C                                                                                | u)                                                                                          |                                                                                             |  |  |
| ance     | Appearance           | No defects or abnormalities.            | The le                                                                  | ad wires s                                                          | hould be imme                                                                  | ersed in the r                                                                              | nelted solder 1.                                                                            | 5 to 2.0mm                                                                                  |  |  |
|          | Capacitance          | Within ±2.5% or ±0.25pF                 | from t                                                                  | ne root of t                                                        | erminal at 260                                                                 | )±5°C for 10±                                                                               | 1 seconds.                                                                                  |                                                                                             |  |  |
| ng       | Change<br>Dielectric | (Whichever is larger)                   |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
| •        |                      | No defects.                             | • Post                                                                  | -treatment                                                          |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          | Strength             |                                         | Capac                                                                   | itor should                                                         | be stored for                                                                  | 24±2 hours                                                                                  | at *room condi                                                                              | tion.                                                                                       |  |  |
| it)      | (Between             |                                         |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          | terminals)           |                                         |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
| ance     | Appearance           | No defects or abnormalities.            | First tl                                                                | ne capacito                                                         | or should be st                                                                | ored at 120+                                                                                | 0/-5°C for 60+0                                                                             | 0/-5 seconds.                                                                               |  |  |
|          | Capacitance          | Within ±2.5% or ±0.25pF                 | Then,                                                                   | the lead w                                                          | ires should be                                                                 | immersed ir                                                                                 | the melted sol                                                                              | der                                                                                         |  |  |
| ng       | Change               | (Whichever is larger)                   | 1.5 to 2.0mm from the root of terminal at 260±5°C for 7.5+0/-1 seconds. |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
| 0        | Dielectric           | No defects.                             |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          | Strength             |                                         | Post-treatment                                                          |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
| it)      | (Between             |                                         |                                                                         |                                                                     |                                                                                | 24±2 hours                                                                                  | at *room condi                                                                              | tion.                                                                                       |  |  |
| ,        | terminals)           |                                         |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
| ance     | Appearance           | No defects or abnormalities.            | Test c                                                                  | ondition                                                            |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          | Capacitance          | Within ±2.5% or ±0.25pF                 |                                                                         |                                                                     | f iron-tip : 350±                                                              | ±10°C                                                                                       |                                                                                             |                                                                                             |  |  |
| ng       | Change               | (Whichever is larger)                   |                                                                         |                                                                     | : 3.5±0.5 seco                                                                 |                                                                                             |                                                                                             |                                                                                             |  |  |
| 0        | Dielectric           | No defects.                             | Soldering position                                                      |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
| ing      | Strength             |                                         |                                                                         | • ·                                                                 | 1.5 to 2.0mm                                                                   | from the root                                                                               | of terminal.                                                                                |                                                                                             |  |  |
| ethod)   | (Between             |                                         |                                                                         | •                                                                   | .5 to 2.0mm fro                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
| ,        | terminals)           |                                         | _                                                                       |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          | ,                    |                                         | • Post                                                                  | -treatment                                                          |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          |                      |                                         |                                                                         |                                                                     |                                                                                | 24±2 hours                                                                                  | at *room condi                                                                              | tion.                                                                                       |  |  |
| rature   | Appearance           | No defects or abnormalities.            |                                                                         |                                                                     |                                                                                |                                                                                             | atments listed i                                                                            |                                                                                             |  |  |
|          | Capacitance          | Within ±5% or ±0.5pF                    |                                                                         | -                                                                   | specified temp                                                                 |                                                                                             |                                                                                             |                                                                                             |  |  |
|          | Change               | (Whichever is larger)                   |                                                                         |                                                                     | coefficient is                                                                 | -                                                                                           |                                                                                             |                                                                                             |  |  |
|          | Q                    | $30pF \leq C : Q \geq 350$              |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          |                      | $10pF \leq C < 30pF : Q \geq 275+5C/2$  |                                                                         | Step                                                                | 1                                                                              | 2                                                                                           | 3                                                                                           | 4                                                                                           |  |  |
|          |                      | 10pF > C : Q ≧ 200+10C                  |                                                                         | Temp.                                                               | Min.                                                                           | Room                                                                                        | Max.                                                                                        | Room                                                                                        |  |  |
|          |                      |                                         |                                                                         | (°C)                                                                | Operating                                                                      | Temp.                                                                                       | Operating                                                                                   | Temp.                                                                                       |  |  |
|          |                      | C : Nominal Capacitance (pF)            |                                                                         |                                                                     | Temp. ±3                                                                       | -                                                                                           | Temp. ±3                                                                                    |                                                                                             |  |  |
|          | I.R.                 | 1,000MΩ or 50MΩ•μF min.                 |                                                                         | Time                                                                | 30±3                                                                           | 3 max.                                                                                      | 30±3                                                                                        | 3 max.                                                                                      |  |  |
|          |                      | (Whichever is smaller)                  |                                                                         | (min.)                                                              |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          | Dielectric           | No defects or abnormalities.            |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          | Strength             |                                         |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          | (Between             |                                         |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          | Terminals)           |                                         |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
| ty       | Appearance           | No defects or abnormalities.            | Set the                                                                 | e capacito                                                          | r at 40±2°C an                                                                 | d relative hu                                                                               | midity 90                                                                                   |                                                                                             |  |  |
| y        | Capacitance          | Within ±5% or ±0.5pF                    | to 95%                                                                  | 6 for 500+2                                                         | 24/-0 hours.                                                                   |                                                                                             |                                                                                             |                                                                                             |  |  |
|          | Change               | (Whichever is larger)                   | Remo                                                                    | ve and set                                                          | for 24±2 hour                                                                  | s at *room co                                                                               | ondition, then n                                                                            | neasure.                                                                                    |  |  |
|          | Q                    | 30pF ≦ C : Q ≧ 350                      |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          |                      | $10pF \leq C < 30pF : Q \geq 275+5C/2$  |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          |                      | 10pF > C : Q ≧ 200+10C                  |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          |                      |                                         |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          |                      | C : Nominal Capacitance (pF)            |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          | I.R.                 | 1,000MΩ or 50MΩ • μF min.               |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          |                      | (Whichever is smaller)                  |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          | emperature : 15      |                                         | nosphere                                                                | pressure :                                                          | 86 to 106kPa                                                                   |                                                                                             |                                                                                             |                                                                                             |  |  |
| tion" Te |                      | · · · · · · · · · · · · · · · · · · ·   | 1                                                                       |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
| tion" Te |                      |                                         |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
| tion" Te |                      |                                         |                                                                         |                                                                     |                                                                                |                                                                                             |                                                                                             |                                                                                             |  |  |
|          | Te                   | Temperature : 15                        | Temperature : 15 to 35°C, Relative humidity : 45 to 75%, At             | Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere | Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : | Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa | Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa | Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa |  |  |

#### Reference only

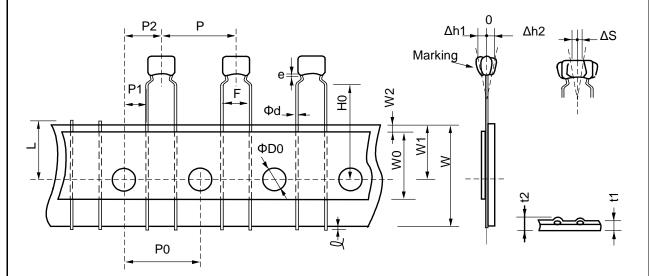

| ).<br>1 | IES         | titom       | On a sifi and i                      | Toot Mothod (Dof. Stondard: U.C. 6404(-U.S. etc.), UC000004(-U.S. etc.)                                       |  |  |  |  |  |  |
|---------|-------------|-------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1       |             | t Item      | Specification                        | Test Method (Ref. Standard:JIS C 5101(all parts), IEC60384(all parts))                                        |  |  |  |  |  |  |
|         | Humidity    | Appearance  | No defects or abnormalities.         | Apply the rated voltage at 40±2°C and relative                                                                |  |  |  |  |  |  |
|         | Load        | Capacitance | Within $\pm 7.5\%$ or $\pm 0.75$ pF  | humidity of 90 to 95% for 500+24/-0 hours.<br>Remove and set for 24±2 hours at *room condition, then measure. |  |  |  |  |  |  |
|         |             | Change      | (Whichever is larger)                |                                                                                                               |  |  |  |  |  |  |
|         |             | Q           | $30pF \leq C : Q \geq 200$           | (Charge/Discharge current $\leq$ 50mA.)                                                                       |  |  |  |  |  |  |
|         |             |             | 30pF > C : Q ≧ 100+10/3              |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             | C : Nominal Capacitance (pF)         |                                                                                                               |  |  |  |  |  |  |
|         |             | I.R.        | 500MΩ or 25MΩ•μF min.                |                                                                                                               |  |  |  |  |  |  |
|         |             |             | (Whichever is smaller)               |                                                                                                               |  |  |  |  |  |  |
| 5       | High        | Appearance  | No defects or abnormalities.         | Apply voltage in Table at the maximum                                                                         |  |  |  |  |  |  |
|         | Temperature | Capacitance | Within ±3% or ±0.3pF                 | operating temperature ±3°C for 1000+48/-0 hours.                                                              |  |  |  |  |  |  |
|         | Load        | Change      | (Whichever is larger)                | Remove and set for 24±2 hours at *room condition, then measure.                                               |  |  |  |  |  |  |
|         |             | Q           | $30pF \leq C : Q \geq 350$           | (Charge/Discharge current $\leq$ 50mA.)                                                                       |  |  |  |  |  |  |
|         |             |             | $10pF \le C < 30pF : Q \ge 275+5C/2$ |                                                                                                               |  |  |  |  |  |  |
|         |             |             | $10pF > C : Q \ge 200+10C$           | Rated voltage Test voltage                                                                                    |  |  |  |  |  |  |
|         |             |             |                                      | DC250V 150% of the rated voltage                                                                              |  |  |  |  |  |  |
|         |             |             |                                      | DC630V, DC1kV 120% of the rated voltage                                                                       |  |  |  |  |  |  |
|         |             |             | C : Nominal Capacitance (pF)         |                                                                                                               |  |  |  |  |  |  |
|         |             | I.R.        | 1,000MΩ or 50MΩ•μF min.              |                                                                                                               |  |  |  |  |  |  |
|         |             |             | (Whichever is smaller)               |                                                                                                               |  |  |  |  |  |  |
|         | Solvent     | Appearance  | No defects or abnormalities.         | The capacitor should be fully immersed, unagitated,                                                           |  |  |  |  |  |  |
|         | Resistance  | Marking     | Legible                              | in reagent at 20 to 25°C for 30±5 seconds and then                                                            |  |  |  |  |  |  |
|         |             |             |                                      | remove gently. Marking on the surface of the                                                                  |  |  |  |  |  |  |
|         |             |             |                                      | capacitor shall immediately be visually examined.                                                             |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      | Regent : Isopropyl alcohol                                                                                    |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |
|         |             |             |                                      |                                                                                                               |  |  |  |  |  |  |



-Ammo pack taping type (Packing style code : A)

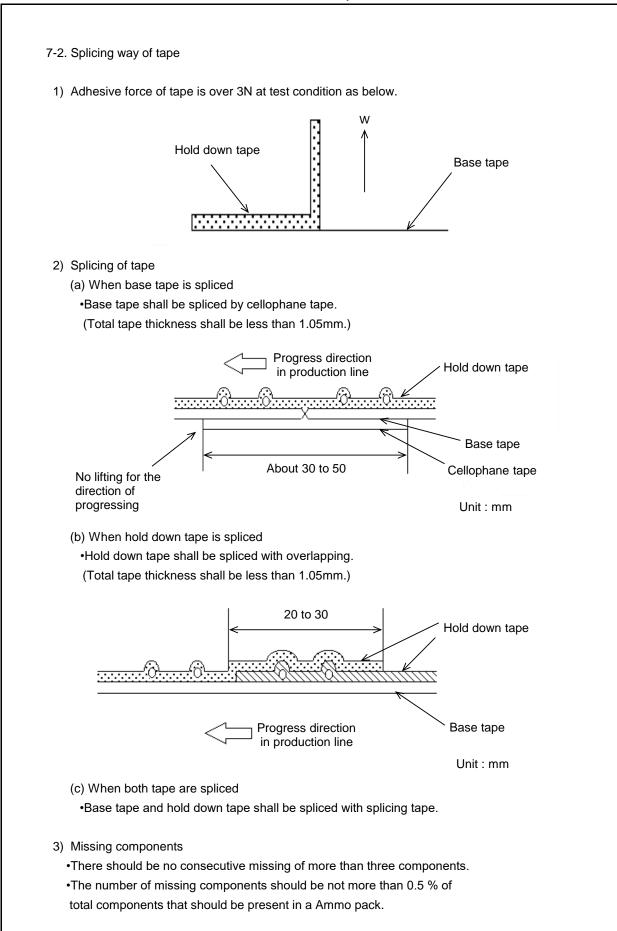
A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.

The size of packing case and packing way




## 7. Taping specification

7-1. Dimension of capacitors on tape


Inside crimp taping type < Lead Style : M1 >

Pitch of component 12.7mm / Lead spacing 5.0mm



Unit : mm

| Item                                             | Code | Dimensions       | Remarks                            |  |  |
|--------------------------------------------------|------|------------------|------------------------------------|--|--|
| Pitch of component                               | Р    | 12.7+/-1.0       |                                    |  |  |
| Pitch of sprocket hole                           | P0   | 12.7+/-0.2       |                                    |  |  |
| Lead spacing                                     | F    | 5.0+0.6/-0.2     |                                    |  |  |
| Length from hole center to component center      | P2   | 6.35+/-1.3       | Deviation of progress direction    |  |  |
| Length from hole center to lead                  | P1   | 3.85+/-0.7       |                                    |  |  |
| Deviation along tape, left or right defect       | ΔS   | 0+/-2.0          | They include deviation by lead ben |  |  |
| Carrier tape width                               | W    | 18.0+/-0.5       |                                    |  |  |
| Position of sprocket hole                        | W1   | 9.0+0/-0.5       | Deviation of tape width direction  |  |  |
| Lead distance between reference and bottom plane | HO   | 16.0+/-0.5       |                                    |  |  |
| Protrusion length                                | l    | 0.5 max.         |                                    |  |  |
| Diameter of sprocket hole                        | ΦD0  | 4.0+/-0.1        |                                    |  |  |
| Lead diameter                                    | Φd   | 0.5+/-0.05       |                                    |  |  |
| Total tape thickness                             | t1   | 0.6+/-0.3        | They include hold down tape        |  |  |
| Total thickness of tape and lead wire            | t2   | 1.5 max.         | thickness                          |  |  |
| Deviation across tons                            | ∆h1  | 2.0 max. (D      | imension code : W)                 |  |  |
| Deviation across tape                            | ∆h2  | 1.0 max. (ex     | ccept as above)                    |  |  |
| Portion to cut in case of defect                 | L    | 11.0+0/-1.0      |                                    |  |  |
| Hold down tape width                             | W0   | 9.5 min.         |                                    |  |  |
| Hold down tape position                          | W2   | 1.5+/-1.5        |                                    |  |  |
| Coating extension on lead                        | е    | Up to the end of | crimp                              |  |  |

