

Various data can be obtained directly from the product search. → <u>Product search (SMD)</u> / <u>Product search (Lead Type)</u>

[CONTENTS]

- Scope
- Rating
- Marking
- Part number list
- Specification
- Packing specification
- Taping specification
- ▲ CAUTION & NOTICE & NOTE

1. Scope

This product specification is applied to Leaded MLCC RCE series.

1. Specific applications:

•Automotive powertrain/safety equipment: Products that can be used for automotive equipment related to running, turning, stopping, safety devices, etc., or equipment whose structure, equipment, and performance are legally required to meet technical standards for safety assurance or environmental protection.

•Automotive infotainment/comfort equipment: Products that can be used for automotive equipment such as car navigation systems and car audio systems that do not directly relate to human life and whose structure, equipment, and performance are not specifically required by law to meet technical standards for safety assurance or environmental protection.

•Medial Equipment [GHTF A/B/C] except for Implant Equipment: Products suitable for use in medical devices designated under the GHTF international classifications as Class A or Class B (the functions of which are not directly involved in protection of human life or property) or in medical devices other than implants designated under the GHTF international classifications as Class C (the malfunctioning of which is considered to pose a comparatively high risk to the human body).

2.Unsuitable Application: Applications listed in "Limitation of applications" in this product specification. WE DISCLAIM ANY LOSS AND DAMAGES ARISING FROM OR IN CONNECTION WITH THE PRODUCTS INCLUDING BUT NOT LIMITED TO THE CASE SUCH LOSS AND DAMAGES CAUSED BY THE UNEXPECTED ACCIDENT, IN EVENT THAT THE PRODUCT IS APPLIED FOR THE PURPOSE WHICH IS SPECIFIED ABOVE

AS THE UNSUITABLE APPLICATION FOR THE PRODUCT.

2. Rating

Part Number Configuration

ex.)								
RCE	5C	1H	104	J	2	K1	H03	В
Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Package
	Characteristics	Voltage		Tolerance	(LxW)	Style	Specification	

Temperature Characteristics

Code	Temp. Char.	Temp. Range	Temp.coef.	Standard Temp.	Operating Temp. Range
5C	C0G	-55∼25°C	0+30/-72ppm/°C	25°C	-55∼125°C
50	(EIA code)	25∼125°C	0+/-30ppm/°C	250	-55**125 0

Rated Voltage

Code	Rated voltage
1H	DC50V
2A	DC100V

Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF. If there is a decimal point, it is expressed by the capital letter "R". In this case, all figures are significant digits.

ex.) In case of 104 . 10 × 10⁴ = 100000 pF In case of 9R0 . 9.0 pF

Capacitance Tolerance

Code	Capacitance Tolerance
С	+/-0.25pF
D	+/-0.5pF
J	+/-5%

• Dimension (LxW)

Please refer to [Part number list].

Lead Style

*Lead wire is "solder coated CP wire".

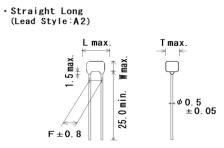
Code	Lead Style	Lead spacing (mm)
A2	Straight type	2.5+/-0.8
DB	Straight taping type	2.5+0.4/-0.2
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

Individual Specification

Murata's control code. Please refer to [Part number list].

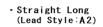
Package

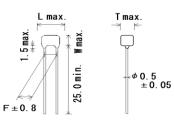
Code	Package
А	Taping type of Ammo
В	Bulk type


3. Marking

Temp. char.	:	Letter code : A (C0G Char.)
Capacitance	:	Actual numbers (Less than 100pF)
		3 digit numbers (100pF and over)
Capacitance tolerance	:	Code
Rated voltage	:	Letter code : 5 (DC50V. Except dimension code : 0,1)
		Letter code : 1 (DC100V. Except dimension code : 0,1)
Company name code	:	Abbreviation : 🕑 (Except dimension code : 0,1)

(Ex.)

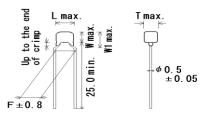

Rated voltage Dimension code	DC50V	DC100V
0,1	A 102J	A 332J
2	E ¹⁰⁴ J5A	C ²²³ J1A


4. Part number list

Customer	Murata Part Number	T.C.	DC Rated	Con	Cap.		Dime	ension ((mm)		Dimension (LxW)	
Part Number	Murata Part Number	1.0.	Volt. (V)	Cap.	Tol.	L	W	W1	F	Т	Lead Style	(F
	RCE5C1H1R0C0A2H03B	C0G	50	1pF	±0.25pF	3.6	3.5	-	2.5	2.5	0A2	ţ
	RCE5C1H2R0C0A2H03B	C0G	50	2pF	±0.25pF	3.6	3.5	-	2.5	2.5	0A2	ł
	RCE5C1H3R0C0A2H03B	C0G	50	3pF	±0.25pF	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H4R0C0A2H03B	C0G	50	4pF	±0.25pF	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H5R0C0A2H03B	C0G	50	5pF	±0.25pF	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H6R0D0A2H03B	C0G	50	6pF	±0.5pF	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H7R0D0A2H03B	C0G	50	7pF	±0.5pF	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H8R0D0A2H03B	C0G	50	8pF	±0.5pF	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H9R0D0A2H03B	C0G	50	9pF	±0.5pF	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H100J0A2H03B	C0G	50	10pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H120J0A2H03B	C0G	50	12pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H150J0A2H03B	C0G	50	15pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H180J0A2H03B	C0G	50	18pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H220J0A2H03B	C0G	50	22pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H270J0A2H03B	C0G	50	27pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H330J0A2H03B	C0G	50	33pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H390J0A2H03B	C0G	50	39pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H470J0A2H03B	C0G	50	47pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H560J0A2H03B	C0G	50	56pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H680J0A2H03B	C0G	50	68pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H820J0A2H03B	C0G	50	82pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H101J0A2H03B	C0G	50	100pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H121J0A2H03B	C0G	50	120pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H151J0A2H03B	C0G	50	150pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H181J0A2H03B	C0G	50	180pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H221J0A2H03B	C0G	50	220pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H271J0A2H03B	C0G	50	270pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H331J0A2H03B	C0G	50	330pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H391J0A2H03B	C0G	50	390pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H471J0A2H03B	C0G	50	470pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H561J0A2H03B	C0G	50	560pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H681J0A2H03B	C0G	50	680pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H821J0A2H03B	C0G	50	820pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H102J0A2H03B	C0G	50	1000pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H122J0A2H03B	C0G	50	1200pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H152J0A2H03B	C0G	50	1500pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H182J0A2H03B	C0G	50	1800pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H222J0A2H03B	C0G	50	2200pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H272J0A2H03B	C0G	50	2700pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C1H332J0A2H03B	C0G	50	3300pF	±5%	3.6	3.5	_	2.5	2.5	0A2	

PNLIST

Customer			DC Rated		Cap.		Dime	ension ((mm)		Dimension	Pa
Part Number	Murata Part Number	T.C.	Volt. (V)	Cap.	Tol.	L	W	W1	F	Т	(LxW) Lead Style	q (p
	RCE5C1H392J0A2H03B	C0G	50	3900pF	±5%	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C1H472J1A2H03B	C0G	50	4700pF	±5%	4.0	3.5	-	2.5	2.5	1A2	5
	RCE5C1H562J1A2H03B	C0G	50	5600pF	±5%	4.0	3.5	-	2.5	2.5	1A2	5
	RCE5C1H682J1A2H03B	C0G	50	6800pF	±5%	4.0	3.5	-	2.5	2.5	1A2	5
	RCE5C1H822J1A2H03B	C0G	50	8200pF	±5%	4.0	3.5	-	2.5	2.5	1A2	5
	RCE5C1H103J1A2H03B	C0G	50	10000pF	±5%	4.0	3.5	-	2.5	2.5	1A2	5
	RCE5C1H123J1A2H03B	C0G	50	12000pF	±5%	4.0	3.5	-	2.5	2.5	1A2	5
	RCE5C1H153J1A2H03B	C0G	50	15000pF	±5%	4.0	3.5	-	2.5	2.5	1A2	5
	RCE5C1H183J1A2H03B	C0G	50	18000pF	±5%	4.0	3.5	-	2.5	2.5	1A2	5
	RCE5C1H223J1A2H03B	C0G	50	22000pF	±5%	4.0	3.5	-	2.5	2.5	1A2	5
	RCE5C1H273J2A2H03B	C0G	50	27000pF	±5%	5.5	4.0	-	2.5	3.15	2A2	5
	RCE5C1H333J2A2H03B	C0G	50	33000pF	±5%	5.5	4.0	-	2.5	3.15	2A2	5
	RCE5C1H393J2A2H03B	C0G	50	39000pF	±5%	5.5	4.0	-	2.5	3.15	2A2	5
	RCE5C1H473J2A2H03B	C0G	50	47000pF	±5%	5.5	4.0	-	2.5	3.15	2A2	5
	RCE5C1H563J2A2H03B	C0G	50	56000pF	±5%	5.5	4.0	-	2.5	3.15	2A2	5
	RCE5C1H683J2A2H03B	C0G	50	68000pF	±5%	5.5	4.0	-	2.5	3.15	2A2	5
	RCE5C1H823J2A2H03B	C0G	50	82000pF	±5%	5.5	4.0	-	2.5	3.15	2A2	5
	RCE5C1H104J2A2H03B	C0G	50	0.1µF	±5%	5.5	4.0	-	2.5	3.15	2A2	5
	RCE5C2A1R0C0A2H03B	C0G	100	1pF	±0.25pF	3.6	3.5	-	2.5	2.5	0A2	Ę
	RCE5C2A2R0C0A2H03B	C0G	100	2pF	±0.25pF	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A3R0C0A2H03B	C0G	100	3pF	±0.25pF	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A4R0C0A2H03B	C0G	100	4pF	±0.25pF	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A5R0C0A2H03B	C0G	100	5pF	±0.25pF	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A6R0D0A2H03B	C0G	100	6pF	±0.5pF	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A7R0D0A2H03B	C0G	100	7pF	±0.5pF	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A8R0D0A2H03B	C0G	100	8pF	±0.5pF	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A9R0D0A2H03B	C0G	100	9pF	±0.5pF	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A100J0A2H03B	C0G	100	10pF	±5%	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A120J0A2H03B	C0G	100	12pF	±5%	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A150J0A2H03B	C0G	100	15pF	±5%	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A180J0A2H03B	C0G	100	18pF	±5%	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A220J0A2H03B	C0G	100	22pF	±5%	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A270J0A2H03B	C0G	100	27pF	±5%	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A330J0A2H03B	C0G	100	33pF	±5%	3.6	3.5	-	2.5	2.5		Ę
	RCE5C2A390J0A2H03B	C0G	100	39pF	±5%	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A470J0A2H03B	C0G	100	47pF	±5%	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A560J0A2H03B	COG	100	56pF	±5%	3.6	3.5	-	2.5	2.5	0A2	5
	RCE5C2A680J0A2H03B	C0G	100	68pF	±5%	3.6	3.5	-	2.5	2.5	0A2	Ę
	RCE5C2A820J0A2H03B	COG	100	82pF	±5%	3.6	3.5	-	2.5	2.5		5
	RCE5C2A101J0A2H03B	COG	100	100pF	±5%	3.6	3.5		2.5	2.5		5

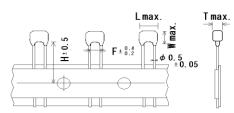

• Straight Lo (Lead Style					e Crimp Style∶K*))						
F ±0	L max. T max. T max. T max. T max. T max. 0.5 ±0.5 ±0.5	05				25.0 min. Wmax.	\rightarrow	max.	5 0. 05			
Customer			DC Rated		Cap.		Dime	ension ((mm)		Unit : mm Dimension	F
Part Number	Murata Part Number	T.C.	Volt. (V)	Cap.	Tol.	L	W	W1	F	т	(LxW) Lead Style	(
	RCE5C2A121J0A2H03B	C0G	100	120pF	±5%	3.6	3.5	-	2.5	2.5	0A2	ł
	RCE5C2A151J0A2H03B	C0G	100	150pF	±5%	3.6	3.5	-	2.5	2.5	0A2	ļ
	RCE5C2A181J0A2H03B	C0G	100	180pF	±5%	3.6	3.5	-	2.5	2.5	0A2	;
	RCE5C2A221J0A2H03B	C0G	100	220pF	±5%	3.6	3.5	-	2.5	2.5	0A2	;
	RCE5C2A271J0A2H03B	C0G	100	270pF	±5%	3.6	3.5	-	2.5	2.5	0A2	1
	RCE5C2A331J0A2H03B	C0G	100 100	330pF	±5%	3.6	3.5	-	2.5	2.5	0A2 0A2	4
	RCE5C2A391J0A2H03B	C0G C0G	100	390pF	±5% ±5%	3.6 3.6	3.5 3.5	-	2.5 2.5	2.5 2.5	0A2 0A2	
	RCE5C2A471J0A2H03B RCE5C2A561J0A2H03B	COG	100	470pF 560pF	±5%	3.6 3.6	3.5 3.5	-	2.5	2.5	0A2 0A2	
	RCE5C2A681J0A2H03B	COG	100	680pF	±5%	3.6	3.5		2.5	2.5	0A2 0A2	
	RCE5C2A821J0A2H03B	COG	100	820pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C2A102J0A2H03B	COG	100	1000pF	±5%	3.6	3.5	-	2.5	2.5	0/12 0A2	
	RCE5C2A122J0A2H03B	COG	100	1200pF	±5%	3.6	3.5	-	2.5	2.5	0/12 0A2	
	RCE5C2A152J0A2H03B	COG	100	1500pF	±5%	3.6	3.5	-	2.5	2.5	0A2	
	RCE5C2A182J1A2H03B	C0G	100	1800pF	±5%	4.0	3.5	-	2.5	2.5	1A2	
	RCE5C2A222J1A2H03B	C0G	100	2200pF	±5%	4.0	3.5	-	2.5	2.5	1A2	1
	RCE5C2A272J1A2H03B	C0G	100	2700pF	±5%	4.0	3.5	-	2.5	2.5	1A2	1
	RCE5C2A332J1A2H03B	C0G	100	3300pF	±5%	4.0	3.5	-	2.5	2.5	1A2	ł
	RCE5C2A392J2A2H03B	C0G	100	3900pF	±5%	5.5	4.0	-	2.5	3.15	2A2	1
	RCE5C2A472J2A2H03B	C0G	100	4700pF	±5%	5.5	4.0	-	2.5	3.15	2A2	1
	RCE5C2A562J2A2H03B	C0G	100	5600pF	±5%	5.5	4.0	-	2.5	3.15	2A2	1
	RCE5C2A682J2A2H03B	C0G	100	6800pF	±5%	5.5	4.0	-	2.5	3.15		1
	RCE5C2A822J2A2H03B	C0G	100	8200pF	±5%	5.5	4.0	-	2.5	3.15		1
	RCE5C2A103J2A2H03B	C0G	100	10000pF	±5%	5.5	4.0	-	2.5	3.15		1
	RCE5C1H1R0C0K1H03B	C0G	50	1pF	±0.25pF	3.6	3.5	6.0		2.5		
	RCE5C1H2R0C0K1H03B RCE5C1H3R0C0K1H03B	C0G C0G	50 50	2pF 3pF	±0.25pF ±0.25pF	3.6 3.6	3.5 3.5	6.0 6.0	5.0 5.0	2.5 2.5		
	RCE5C1H4R0C0K1H03B	COG	50	3pF 4pF	±0.25pF ±0.25pF	3.6	3.5	6.0	5.0	2.5		
	RCE5C1H5R0C0K1H03B	COG	50	5pF	±0.25pF	3.6	3.5	6.0	5.0	2.5		
	RCE5C1H6R0D0K1H03B	C0G	50	6pF	±0.5pF	3.6	3.5	6.0	5.0	2.5		
	RCE5C1H7R0D0K1H03B	C0G	50	7pF	±0.5pF	3.6	3.5	6.0	5.0	2.5	0K1	
	RCE5C1H8R0D0K1H03B	C0G	50	8pF	±0.5pF	3.6	3.5	6.0	5.0	2.5	0K1	
	RCE5C1H9R0D0K1H03B	C0G	50	9pF	±0.5pF	3.6	3.5	6.0	5.0	2.5	0K1	
	RCE5C1H100J0K1H03B	C0G	50	10pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	
	RCE5C1H120J0K1H03B	C0G	50	12pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	
	RCE5C1H150J0K1H03B	C0G	50	15pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	
	RCE5C1H180J0K1H03B	C0G	50	18pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	1
	RCE5C1H220J0K1H03B	C0G	50	22pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	1
	RCE5C1H270J0K1H03B	COG	50	27pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	

-lnside Crimp (Lead Style∶K*)	
25.0 min.	T max. → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

 $F \pm 0.8$

Customer	Murata Dart Number	то	DC Rated	0	Cap.		Dime	ension (mm)		Dimension	
Part Number	Murata Part Number	T.C.	Volt. (V)	Cap.	Tol.	L	W	W1	F	Т	(LxW) Lead Style	(þ
	RCE5C1H390J0K1H03B	C0G	50	39pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C1H470J0K1H03B	C0G	50	47pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	{
	RCE5C1H560J0K1H03B	C0G	50	56pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	1
	RCE5C1H680J0K1H03B	C0G	50	68pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	1
	RCE5C1H820J0K1H03B	C0G	50	82pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	ł
	RCE5C1H101J0K1H03B	C0G	50	100pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	ł
	RCE5C1H121J0K1H03B	C0G	50	120pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	1
	RCE5C1H151J0K1H03B	C0G	50	150pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	ł
	RCE5C1H181J0K1H03B	C0G	50	180pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	4
	RCE5C1H221J0K1H03B	C0G	50	220pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	
	RCE5C1H271J0K1H03B	C0G	50	270pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	
	RCE5C1H331J0K1H03B	C0G	50	330pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	ł
	RCE5C1H391J0K1H03B	C0G	50	390pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	
	RCE5C1H471J0K1H03B	C0G	50	470pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	
	RCE5C1H561J0K1H03B	C0G	50	560pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	ł
	RCE5C1H681J0K1H03B	C0G	50	680pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	
	RCE5C1H821J0K1H03B	C0G	50	820pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	ł
	RCE5C1H102J0K1H03B	C0G	50	1000pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	
	RCE5C1H122J0K1H03B	C0G	50	1200pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	ł
	RCE5C1H152J0K1H03B	C0G	50	1500pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	4
	RCE5C1H182J0K1H03B	C0G	50	1800pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	!
	RCE5C1H222J0K1H03B	C0G	50	2200pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	1
	RCE5C1H272J0K1H03B	C0G	50	2700pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	!
	RCE5C1H332J0K1H03B	C0G	50	3300pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	1
	RCE5C1H392J0K1H03B	C0G	50	3900pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	4
	RCE5C1H472J1K1H03B	C0G	50	4700pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	4
	RCE5C1H562J1K1H03B	C0G	50	5600pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	ł
	RCE5C1H682J1K1H03B	C0G	50	6800pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	1
	RCE5C1H822J1K1H03B	C0G	50	8200pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	1
	RCE5C1H103J1K1H03B	C0G	50	10000pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	4
	RCE5C1H123J1K1H03B	C0G	50	12000pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	1
	RCE5C1H153J1K1H03B	C0G	50	15000pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	1
	RCE5C1H183J1K1H03B	C0G	50	18000pF	±5%	4.0	3.5	5.0	5.0	2.5		1
	RCE5C1H223J1K1H03B	C0G	50	22000pF	±5%	4.0	3.5	5.0	5.0	2.5		1
	RCE5C1H273J2K1H03B	C0G	50	27000pF	±5%	5.5	4.0	6.0	5.0	3.15		1
	RCE5C1H333J2K1H03B	C0G	50	33000pF	±5%	5.5	4.0	6.0	5.0	3.15		1
	RCE5C1H393J2K1H03B	C0G	50	39000pF	±5%	5.5	4.0	6.0	5.0	3.15		4
	RCE5C1H473J2K1H03B	C0G	50	47000pF	±5%	5.5	4.0	6.0	5.0	3.15		1
	RCE5C1H563J2K1H03B	C0G	50	56000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	4
	RCE5C1H683J2K1H03B	C0G	50	68000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	1

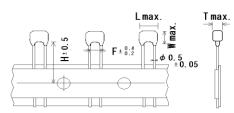
• Inside	e Crimp
(Lead	Style∶K*)



Customer			DC Rated		Cap.		Dime	ension (mm)		Dimension	
Part Number	Murata Part Number	T.C.	Volt. (V)	Cap.	Tol.	L	W	W1	F	Т	(LxW) Lead Style	q (p
	RCE5C1H823J2K1H03B	C0G	50	82000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	5
	RCE5C1H104J2K1H03B	C0G	50	0.1µF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	5
	RCE5C2A1R0C0K1H03B	C0G	100	1pF	±0.25pF	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCE5C2A2R0C0K1H03B	C0G	100	2pF	±0.25pF	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCE5C2A3R0C0K1H03B	C0G	100	3pF	±0.25pF	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCE5C2A4R0C0K1H03B	C0G	100	4pF	±0.25pF	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCE5C2A5R0C0K1H03B	C0G	100	5pF	±0.25pF	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCE5C2A6R0D0K1H03B	C0G	100	6pF	±0.5pF	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCE5C2A7R0D0K1H03B	C0G	100	7pF	±0.5pF	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCE5C2A8R0D0K1H03B	C0G	100	8pF	±0.5pF	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCE5C2A9R0D0K1H03B	C0G	100	9pF	±0.5pF	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCE5C2A100J0K1H03B	C0G	100	10pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCE5C2A120J0K1H03B	C0G	100	12pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCE5C2A150J0K1H03B	C0G	100	15pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A180J0K1H03B	C0G	100	18pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A220J0K1H03B	C0G	100	22pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A270J0K1H03B	C0G	100	27pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A330J0K1H03B	C0G	100	33pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A390J0K1H03B	C0G	100	39pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A470J0K1H03B	C0G	100	47pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A560J0K1H03B	C0G	100	56pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCE5C2A680J0K1H03B	C0G	100	68pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A820J0K1H03B	C0G	100	82pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A101J0K1H03B	C0G	100	100pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A121J0K1H03B	C0G	100	120pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A151J0K1H03B	C0G	100	150pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A181J0K1H03B	C0G	100	180pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A221J0K1H03B	C0G	100	220pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A271J0K1H03B	C0G	100	270pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A331J0K1H03B	C0G	100	330pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A391J0K1H03B	C0G	100	390pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A471J0K1H03B	C0G	100	470pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A561J0K1H03B	C0G	100	560pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A681J0K1H03B	C0G	100	680pF	±5%	3.6	3.5	6.0	5.0	2.5	1	ţ
	RCE5C2A821J0K1H03B	C0G	100	820pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A102J0K1H03B	C0G	100	1000pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A122J0K1H03B	C0G	100	1200pF	±5%	3.6	3.5	6.0	5.0	2.5		Ę
	RCE5C2A152J0K1H03B	C0G	100	1500pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	Ę
	RCE5C2A182J1K1H03B	C0G	100	1800pF	±5%	4.0	3.5	5.0	5.0	2.5		Ę
	RCE5C2A222J1K1H03B	C0G	100	2200pF	±5%	4.0	3.5	5.0	5.0	2.5		5

٦

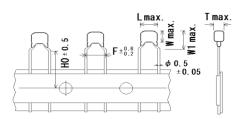
Г


• Straight Taping (Lead Style∶DB)

Customer		ŦO	DC Rated	0	Cap.		D	imensi	on (mn	n)		Dimension	
Part Number	Murata Part Number	T.C.	Volt. (V)	Cap.	Tol.	L	W	W1	F	т	H/H0	(LxW) Lead Style	qt (po
	RCE5C1H1R0C0DBH03A	C0G	50	1pF	±0.25pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H2R0C0DBH03A	C0G	50	2pF	±0.25pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H3R0C0DBH03A	C0G	50	3pF	±0.25pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H4R0C0DBH03A	C0G	50	4pF	±0.25pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H5R0C0DBH03A	C0G	50	5pF	±0.25pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H6R0D0DBH03A	C0G	50	6pF	±0.5pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H7R0D0DBH03A	C0G	50	7pF	±0.5pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H8R0D0DBH03A	C0G	50	8pF	±0.5pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H9R0D0DBH03A	C0G	50	9pF	±0.5pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H100J0DBH03A	C0G	50	10pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H120J0DBH03A	C0G	50	12pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H150J0DBH03A	C0G	50	15pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H180J0DBH03A	C0G	50	18pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H220J0DBH03A	C0G	50	22pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H270J0DBH03A	C0G	50	27pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H330J0DBH03A	C0G	50	33pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H390J0DBH03A	C0G	50	39pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H470J0DBH03A	C0G	50	47pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H560J0DBH03A	C0G	50	56pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H680J0DBH03A	C0G	50	68pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H820J0DBH03A	C0G	50	82pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H101J0DBH03A	C0G	50	100pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H121J0DBH03A	C0G	50	120pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H151J0DBH03A	C0G	50	150pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H181J0DBH03A	C0G	50	180pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H221J0DBH03A	C0G	50	220pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H271J0DBH03A	C0G	50	270pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H331J0DBH03A	C0G	50	330pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H391J0DBH03A	C0G	50	390pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H471J0DBH03A	C0G	50	470pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H561J0DBH03A	C0G	50	560pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H681J0DBH03A	C0G	50	680pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H821J0DBH03A	C0G	50	820pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H102J0DBH03A	C0G	50	1000pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H122J0DBH03A	C0G	50	1200pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H152J0DBH03A	C0G	50	1500pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H182J0DBH03A	C0G	50	1800pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H222J0DBH03A	C0G	50	2200pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H272J0DBH03A	C0G	50	2700pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H332J0DBH03A	C0G	50	3300pF	±5%	3.6	3.5		2.5	2.5	16.0	0DB	20

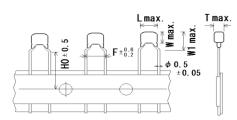
PNLIST

• Straight Taping (Lead Style:DB)


Customer			DC Rated		Cap.		D	imensi	on (mn	n)		Dimension	
Part Number	Murata Part Number	T.C.	Volt. (V)	Cap.	Tol.	L	W	W1	F	т	H/H0	(LxW) Lead Style	qt (po
	RCE5C1H392J0DBH03A	C0G	50	3900pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C1H472J1DBH03A	C0G	50	4700pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCE5C1H562J1DBH03A	C0G	50	5600pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCE5C1H682J1DBH03A	C0G	50	6800pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCE5C1H822J1DBH03A	C0G	50	8200pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCE5C1H103J1DBH03A	C0G	50	10000pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCE5C1H123J1DBH03A	C0G	50	12000pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCE5C1H153J1DBH03A	C0G	50	15000pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCE5C1H183J1DBH03A	C0G	50	18000pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCE5C1H223J1DBH03A	C0G	50	22000pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCE5C1H273J2DBH03A	C0G	50	27000pF	±5%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCE5C1H333J2DBH03A	C0G	50	33000pF	±5%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCE5C1H393J2DBH03A	C0G	50	39000pF	±5%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCE5C1H473J2DBH03A	C0G	50	47000pF	±5%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCE5C1H563J2DBH03A	C0G	50	56000pF	±5%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCE5C1H683J2DBH03A	C0G	50	68000pF	±5%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCE5C1H823J2DBH03A	C0G	50	82000pF	±5%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCE5C1H104J2DBH03A	C0G	50	0.1µF	±5%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCE5C2A1R0C0DBH03A	C0G	100	1pF	±0.25pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A2R0C0DBH03A	C0G	100	2pF	±0.25pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A3R0C0DBH03A	C0G	100	3pF	±0.25pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A4R0C0DBH03A	C0G	100	4pF	±0.25pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A5R0C0DBH03A	C0G	100	5pF	±0.25pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A6R0D0DBH03A	C0G	100	6pF	±0.5pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A7R0D0DBH03A	C0G	100	7pF	±0.5pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A8R0D0DBH03A	C0G	100	8pF	±0.5pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A9R0D0DBH03A	C0G	100	9pF	±0.5pF	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A100J0DBH03A	C0G	100	10pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A120J0DBH03A	C0G	100	12pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A150J0DBH03A	C0G	100	15pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A180J0DBH03A	C0G	100	18pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A220J0DBH03A	C0G	100	22pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A270J0DBH03A	C0G	100	27pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A330J0DBH03A	C0G	100	33pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A390J0DBH03A	C0G	100	39pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A470J0DBH03A	C0G	100	47pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A560J0DBH03A	C0G	100	56pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A680J0DBH03A	C0G	100	68pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A820J0DBH03A	C0G	100	82pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A101J0DBH03A	C0G	100	100pF	±5%	3.6	3.5		2.5	2.5	16.0	0DB	20

PNLIST

· Straight (Lead St	Taping yle∶DB)				ide Crimp d Style:N		g						
	L max. $F \pm 0.4$ $\phi 0.5$ ± 0.0	5	K. ←		H0±0.5		5±0.2			T max.			
	T											Unit : mm	
Customer Part Number	Murata Part Number	T.C.	DC Rated Volt.	Cap.	Cap. Tol.	L	D	imensi W1	on (mn F	n) T	Н/НО	Dimension (LxW) Lead Style	qty
			(V)	100 5	===			VVI	-			-	
	RCE5C2A121J0DBH03A	C0G	100	120pF	±5%	3.6	3.5	-	2.5	2.5		0DB	200
	RCE5C2A151J0DBH03A RCE5C2A181J0DBH03A	C0G C0G	100 100	150pF 180pF	±5% ±5%	3.6 3.6	3.5 3.5	-	2.5 2.5	2.5 2.5		0DB 0DB	20 20
	RCE5C2A181J0DBH03A	COG	100	220pF	±3% ±5%	3.6	3.5	-	2.5	2.5		0DB 0DB	20
	RCE5C2A271J0DBH03A	COG	100	270pF	±5%	3.6	3.5	-	2.5	2.5		0DB	20
	RCE5C2A331J0DBH03A	C0G	100	330pF	±5%	3.6	3.5	-	2.5	2.5		0DB	20
	RCE5C2A391J0DBH03A	C0G	100	390pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A471J0DBH03A	C0G	100	470pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A561J0DBH03A	C0G	100	560pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A681J0DBH03A	C0G	100	680pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A821J0DBH03A	C0G	100	820pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A102J0DBH03A	C0G	100	1000pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCE5C2A122J0DBH03A	COG	100	1200pF	±5%	3.6	3.5	-	2.5	2.5		0DB	20
	RCE5C2A152J0DBH03A	C0G	100	1500pF	±5%	3.6	3.5	-	2.5	2.5		0DB	20
	RCE5C2A182J1DBH03A	C0G	100	1800pF	±5%	4.0	3.5	-	2.5	2.5		1DB	20
	RCE5C2A222J1DBH03A	C0G	100 100	2200pF	±5%	4.0 4.0	3.5 3.5	-	2.5 2.5	2.5		1DB 1DB	20 20
	RCE5C2A272J1DBH03A RCE5C2A332J1DBH03A	C0G C0G	100	2700pF 3300pF	±5% ±5%	4.0	3.5 3.5	-	2.5 2.5	2.5 2.5		1DB 1DB	20
	RCE5C2A392J2DBH03A	C0G		3900pF	±5%	5.5	4.0		2.5				20
	RCE5C2A472J2DBH03A	C0G	100	4700pF	±5%	5.5	4.0	_	2.5				20
	RCE5C2A562J2DBH03A	COG	100	5600pF	±5%	5.5	4.0	-	2.5				20
	RCE5C2A682J2DBH03A	C0G	100	6800pF	±5%	5.5	4.0	-	2.5	3.15			20
	RCE5C2A822J2DBH03A	C0G	100	8200pF	±5%	5.5	4.0	-	2.5	3.15			20
	RCE5C2A103J2DBH03A	C0G	100	10000pF	±5%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCE5C1H1R0C0M1H03A	C0G	50	1pF	±0.25pF	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H2R0C0M1H03A	C0G	50	2pF	±0.25pF	3.6	3.5	6.0	5.0	2.5		0M1	20
	RCE5C1H3R0C0M1H03A	C0G	50	3pF	±0.25pF	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H4R0C0M1H03A	C0G	50	4pF	±0.25pF	3.6	3.5	6.0	5.0	2.5		0M1	20
	RCE5C1H5R0C0M1H03A	C0G	50	5pF	±0.25pF	3.6	3.5	6.0	5.0	2.5			20
	RCE5C1H6R0D0M1H03A		50	6pF	±0.5pF	3.6	3.5 3.5	6.0	5.0 5.0	2.5			20
	RCE5C1H7R0D0M1H03A	C0G C0G	50 50	7pF 8nF	±0.5pF	3.6 3.6	3.5 3.5	6.0	5.0 5.0	2.5 2.5		0M1 0M1	20 20
	RCE5C1H8R0D0M1H03A RCE5C1H9R0D0M1H03A	COG	50 50	8pF 9pF	±0.5pF ±0.5pF	3.6	3.5 3.5	6.0 6.0	5.0 5.0	2.5		0M1	20
	RCE5C1H100J0M1H03A	COG	50	9pF 10pF	±0.5pr ±5%	3.6	3.5	6.0	5.0	2.5		0M1	20
	RCE5C1H120J0M1H03A	C0G	50	10pf 12pF	±5%	3.6	3.5	6.0	5.0	2.5		0M1	20
	RCE5C1H150J0M1H03A	COG	50	12p1 15pF	±5%	3.6	3.5	6.0	5.0	2.5		0M1	20
	RCE5C1H180J0M1H03A	C0G	50	18pF	±5%	3.6	3.5	6.0	5.0	2.5		0M1	20
	RCE5C1H220J0M1H03A	C0G	50	22pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
			r							1	T	1	1
	RCE5C1H270J0M1H03A	C0G	50	27pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20


PNLIST

・Inside Crimp Taping (Lead Style:M*)

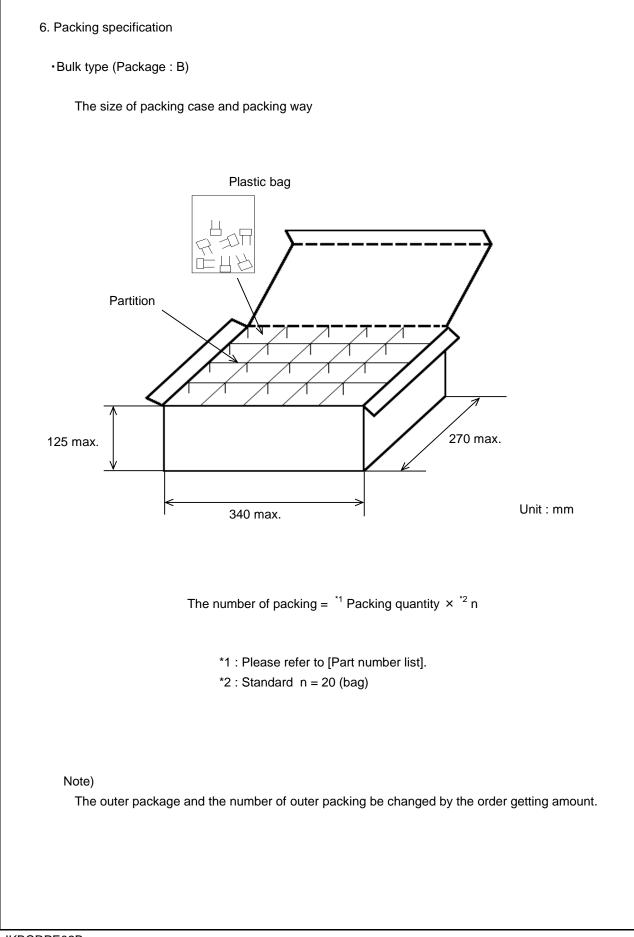
			D 0									Unit : mm	Γ
Customer Part Number	Murata Part Number	T.C.	DC Rated Volt.	Cap.	Cap. Tol.		Di	imensio	on (mn	n)		Dimension (LxW)	qt
			(V)		101.	L	W	W1	F	Т	H/H0	Lead Style	(p
	RCE5C1H390J0M1H03A	C0G	50	39pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H470J0M1H03A	C0G	50	47pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H560J0M1H03A	C0G	50	56pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H680J0M1H03A	C0G	50	68pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H820J0M1H03A	C0G	50	82pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H101J0M1H03A	C0G	50	100pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H121J0M1H03A	C0G	50	120pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H151J0M1H03A	C0G	50	150pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H181J0M1H03A	C0G	50	180pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H221J0M1H03A	C0G	50	220pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H271J0M1H03A	C0G	50	270pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H331J0M1H03A	C0G	50	330pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H391J0M1H03A	C0G	50	390pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H471J0M1H03A	C0G	50	470pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H561J0M1H03A	C0G	50	560pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H681J0M1H03A	C0G	50	680pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H821J0M1H03A	C0G	50	820pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H102J0M1H03A	C0G	50	1000pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H122J0M1H03A	C0G	50	1200pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H152J0M1H03A	C0G	50	1500pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H182J0M1H03A	C0G	50	1800pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H222J0M1H03A	C0G	50	2200pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H272J0M1H03A	C0G	50	2700pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H332J0M1H03A	C0G	50	3300pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H392J0M1H03A	C0G	50	3900pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C1H472J1M1H03A	C0G	50	4700pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCE5C1H562J1M1H03A	C0G	50	5600pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCE5C1H682J1M1H03A	C0G	50	6800pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCE5C1H822J1M1H03A	C0G	50	8200pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCE5C1H103J1M1H03A	C0G	50	10000pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCE5C1H123J1M1H03A	C0G	50	12000pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCE5C1H153J1M1H03A	C0G	50	15000pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCE5C1H183J1M1H03A	C0G	50	18000pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCE5C1H223J1M1H03A	C0G	50	22000pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCE5C1H273J2M1H03A	C0G	50	27000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C1H333J2M1H03A	C0G	50	33000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C1H393J2M1H03A	C0G	50	39000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C1H473J2M1H03A	C0G	50	47000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C1H563J2M1H03A	C0G	50	56000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C1H683J2M1H03A	C0G	50	68000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20

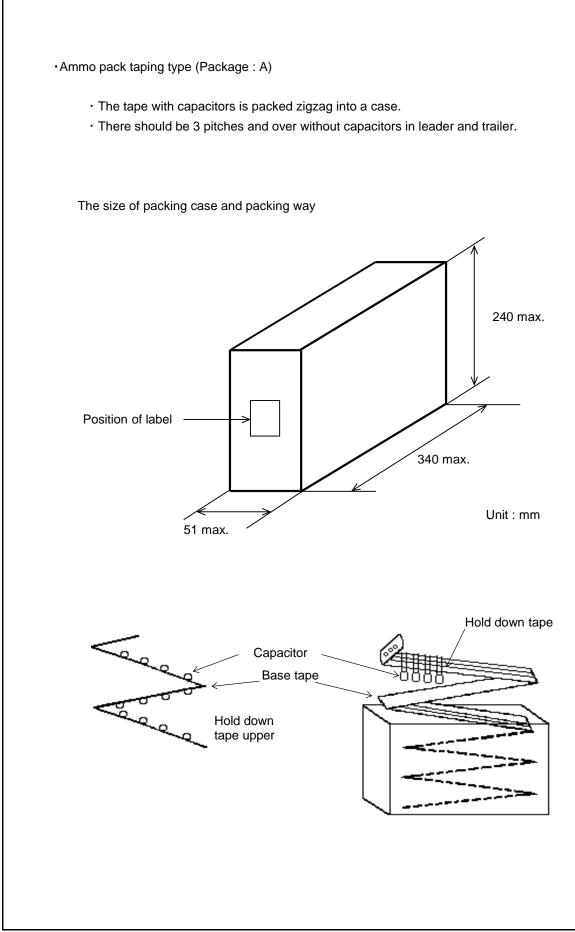
・Inside Crimp Taping (Lead Style:M*)

			DC				Di	imensio	on (mn	n)		Dimension	Pa
Customer Part Number	Murata Part Number	T.C.	Rated Volt. (V)	Cap.	Cap. Tol.	L	W	W1	F	T	H/H0	(LxW) Lead Style	qt
	RCE5C1H823J2M1H03A	C0G	50	82000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C1H104J2M1H03A	C0G	50	0.1µF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C2A1R0C0M1H03A	C0G	100	1pF	±0.25pF	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A2R0C0M1H03A	C0G	100	2pF	±0.25pF	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A3R0C0M1H03A	C0G	100	3pF	±0.25pF	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A4R0C0M1H03A	C0G	100	4pF	±0.25pF	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A5R0C0M1H03A	C0G	100	5pF	±0.25pF	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A6R0D0M1H03A	C0G	100	6pF	±0.5pF	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A7R0D0M1H03A	C0G	100	7pF	±0.5pF	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A8R0D0M1H03A	C0G	100	8pF	±0.5pF	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A9R0D0M1H03A	C0G	100	9pF	±0.5pF	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A100J0M1H03A	C0G	100	10pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A120J0M1H03A	C0G	100	12pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A150J0M1H03A	C0G	100	15pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A180J0M1H03A	C0G	100	18pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A220J0M1H03A	C0G	100	22pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A270J0M1H03A	C0G	100	27pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A330J0M1H03A	C0G	100	33pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A390J0M1H03A	C0G	100	39pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A470J0M1H03A	C0G	100	47pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A560J0M1H03A	C0G	100	56pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A680J0M1H03A	C0G	100	68pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A820J0M1H03A	C0G	100	82pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A101J0M1H03A	C0G	100	100pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A121J0M1H03A	C0G	100	120pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A151J0M1H03A	C0G	100	150pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A181J0M1H03A	C0G	100	180pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A221J0M1H03A	C0G	100	220pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A271J0M1H03A	C0G	100	270pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A331J0M1H03A	C0G	100	330pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A391J0M1H03A	C0G	100	390pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A471J0M1H03A	C0G	100	470pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A561J0M1H03A	C0G	100	560pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A681J0M1H03A	C0G	100	680pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A821J0M1H03A	C0G	100	820pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A102J0M1H03A	C0G	100	1000pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A122J0M1H03A	C0G	100	1200pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A152J0M1H03A	C0G	100	1500pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCE5C2A182J1M1H03A	C0G	100	1800pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCE5C2A222J1M1H03A	C0G	100	2200pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20

- Inside Cri (Lead Styl	e:M*) Lmax. Soon Teen Yee		(. 										
			DC							~)		Unit : mm	
Customer	Murata Part Number	T.C.	Rated	Cap.	Cap.		D	imensi	on (mr	n)	I	Dimension (LxW)	Pack qty.
Part Number			Volt. (V)		Tol.	L	W	W1	F	т	H/H0	Lead Style	(pcs
	RCE5C2A272J1M1H03A	C0G	100	2700pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	200
	RCE5C2A332J1M1H03A	C0G	100	3300pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	200
	RCE5C2A392J2M1H03A	C0G	100	3900pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	200
	RCE5C2A472J2M1H03A	C0G	100	4700pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	200
	RCE5C2A562J2M1H03A	C0G	100	5600pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	200
	RCE5C2A682J2M1H03A	C0G	100	6800pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	200
	RCE5C2A822J2M1H03A	C0G	100	8200pF	±5%	5.5	4.0	6.0	5.0	3.15			200
	RCE5C2A103J2M1H03A	C0G	100	10000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000

).	Tes	Item	Specification	Test Method (Compliant Standard:AEC-Q200)
	Pre-and Post-	Stress		
	Electrical Tes	t		-
2	High	Appearance	No defects or abnormalities	Sit the capacitor for 1000±12h at 150±3°C. Let sit for 24±2h at
	Temperature	Capacitance	Within ±3% or ±0.3pF	*room condition, then measure.
	Exposure	Change	(Whichever is larger)	
	(Storage)	Q	$30pF \leq C : Q \geq 350$	-
	($10pF \le C < 30pF : Q \ge 275+5C/2$	
			$10pF > C : Q \ge 200+10C$	
			C : Nominal Capacitance (pF)	_
		I.R.	More than 1,000MΩ or 50 MΩ · µF	
			(Whichever is smaller)	
3	Temperature	Appearance	No defects or abnormalities	Perform the 1000 cycles according to the four heat treatments
	Cycling	Capacitance	Within ±5% or ±0.5pF	listed in the following table. Let sit for 24±2 h at *room condition,
		Change	(Whichever is larger)	then measure.
		Q	$30pF \leq C : Q \geq 350$	Step 1 2 3 4
			10pF ≦ C < 30pF : Q ≧ 275+5C/2	
			10pF > C : Q ≧ 200+10C	Temp55+0/-3 Room 125+3/-0 Room
				(°C) ^{-33+0/-3} Temp. ^{123+3/-0} Temp.
			C : Nominal Capacitance (pF)	Time 15±3 1 15±3 1
		I.R.	1,000M Ω or 50M Ω ·µF min.	(min.) 15±5 1 15±5 1
			(Whichever is smaller)	
4	Moisture	Appeorance	No defects or abnormalities	Apply the 24h heat (25 to 65°C) and humidity (80 to 98%)
4		Appearance		
	Resistance	Capacitance	Within $\pm 5\%$ or ± 0.5 pF	treatment shown below, 10 consecutive times.
		Change	(Whichever is larger)	Let sit for 24±2 h at *room condition, then measure.
		Q	$30pF \leq C : Q \geq 200$	Temperature Humidity Humidity (%C) Humidity 80~98% Humidity 80~98% Humidity
			30pF > C : Q ≧ 100+10C/3	(°C) 90~98% V 90~98% Humidity 80~98% Humidity 70 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
			C : Nominal Capacitance (pF)	
		I.R.	500MΩ or 25MΩ • μF min.	
			(Whichever is smaller)	950 945 940 §35
			· · · · · ·	
				20 20 200
				15 10 Initial measurement
				Initial measurement
				0
				-5
				-10 -10 One cycle 24 hours
				0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
				Hours
5	Biased	Appearance	No defects or abnormalities	Apply the rated voltage and DC1.3+0.2/-0V (add 100k Ω resistor)
	Humidity	Capacitance	Within ±5% or ± 0.5pF	at 85±3°C and 80 to 85% humidity for 1,000±12h.
		Change	(Whichever is larger)	Remove and let sit for 24±2 h at *room condition, then measure.
		Q	$30pF \leq C : Q \geq 200$	The charge/discharge current is less than 50mA.
		a	$30pF > C : Q \ge 100+10C/3$	The charge/discharge current is isso than som A.
			$30PF > C \cdot Q \ge 100+10C/3$	
			C : Nominal Capacitance (pF)	_
		I.R.	500MΩ or 25MΩ • μF min.	
			(Whichever is smaller)	
6	Operational	Appearance	No defects or abnormalities	Apply 200% of the rated voltage for 1000±12h at 125±3°C.
	Life	Capacitance	Within ±3% or ±0.3pF	Let sit for 24±2 h at *room condition, then measure.
		Change	(Whichever is larger)	The charge/discharge current is less than 50mA.
		Q	$30pF \leq C : Q \geq 350$	
			$10pF \le C < 30pF : Q \ge 275+5C/2$	
			$10pF > C : Q \ge 200+10C$	
		1	1	
			C Naminal Constitute (E)	
			C : Nominal Capacitance (pF)	
		I.R.	C : Nominal Capacitance (pF) 1,000MΩ or 50MΩ+μF min. (Whichever is smaller)	-

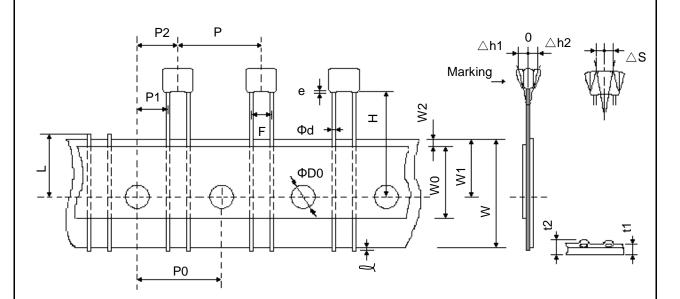

Reference only


0.	Tes	t Item	Specification	Test Method (Compliant Standard:AEC-Q200)
7	External Visua	1	No defects or abnormalities.	Visual inspection.
8	Physical Dime	nsion	Within the specified dimensions.	Using calipers and micrometers.
9	Marking		To be easily legible.	Visual inspection.
10	Resistance	Appearance	No defects or abnormalities.	Per MIL-STD-202 Method 215.
	to Solvents	Capacitance	Within the specified tolerance.	Solvent 1 : 1 part (by volume) of isopropyl alcohol
		Q	30pF ≦ C : Q ≧ 1,000	3 parts (by volume) of mineral spirits
		u a	$30pF > C : Q \ge 400+20C$	Solvent 2 : Terpene defluxer
				Solvent 3 : 42 parts (by volume) of water
			C : Nominal Capacitance (pF)	1part (by volume) of propylene glycol
		I.R.	More than 10,000MΩ or 500 MΩ • μF	monomethyl ether
			(Whichever is smaller)	1 part (by volume) of monoethanolamine
11	Mechanical	Appearance	No defects or abnormalities.	Three shocks in each direction should be applied along 3
	Shock	Capacitance	Within the specified tolerance.	mutually perpendicular axes of the test specimen (18 shocks).
		Q	30pF ≦ C : Q ≧ 1,000	The specified test pulse should be Half-sine and should have a
			30pF > C : Q ≧ 400+20C	duration : 0.5ms, peak value : 1500G and velocity change : 4.7m/s.
			C : Nominal Capacitance (pF)	
12	Vibration	Appearance	No defects or abnormalities.	The capacitor should be subjected to a simple harmonic motion
		Capacitance	Within the specified tolerance.	having a total amplitude of 1.5mm, the frequency being varied
		Q	$30\text{pF} \leq \text{C}: \text{Q} \geq 1,000$	uniformly between the approximate limits of 10 and 2,000Hz.
			$30pF > C : Q \ge 400+20C$	The frequency range, from 10 to 2000Hz and return to 10Hz,
				should be traversed in approximately 20 min. This motion
			C : Nominal Capacitance (pF)	
			C : Nominal Capacitance (pr)	should be applied for 12 items in each 3 mutually perpendicular
	-			directions (total of 36 times).
13-1	Resistance	Appearance	No defects or abnormalities.	The lead wires should be immersed in the melted solder 1.5 to
	to	Capacitance	Within ±2.5% or ±0.25pF	2.0mm from the root of terminal at 260±5°C for 10±1 seconds.
	Soldering	Change	(Whichever is larger)	
	Heat	Dielectric	No defects.	Post-treatment
	(Non-	Strength		Capacitor should be stored for 24±2 hours at *room condition.
	Preheat)	(Between		
		terminals)		
3-2	Resistance	Appearance	No defects or abnormalities.	First the capacitor should be stored at 120+0/-5°C for 60+0/-5 seconds.
	to	Capacitance	Within ±2.5% or ±0.25pF	Then, the lead wires should be immersed in the melted solder
	Soldering	Change	(Whichever is larger)	1.5 to 2.0mm from the root of terminal at 260±5°C for 7.5+0/-1 seconds.
	Heat	Dielectric	No defects	—
	(On-	Strength		Post-treatment
	Preheat)	(Between		Capacitor should be stored for 24 ± 2 hours at *room condition.
	i ielieat)	X		
<u> </u>	Desistance	terminals)	No defecto er chromolitico	Test condition
3-3	Resistance	Appearance	No defects or abnormalities.	Test condition
	to	Capacitance	Within $\pm 2.5\%$ or ± 0.25 pF	Termperature of iron-tip : 350±10°C
	Soldering	Change	(Whichever is larger)	Soldering time : 3.5±0.5 seconds
	Heat	Dielectric	No defects	Soldering position
	(soldering	Strength		Straight Lead : 1.5 to 2.0mm from the root of terminal.
	iron method)	(Between		Crimp Lead : 1.5 to 2.0mm from the end of lead bend.
		terminals)		
				Post-treatment
				Capacitor should be stored for 24±2 hours at *room condition.
14	Thermal	Appearance	No defects or abnormalities.	Perform the 300 cycles according to the two heat treatments listed
	Shock	Capacitance	Within ±5% or ±0.5pF	in the following table (Maximum transfer time is 20s.). Let sit for
		Change	(Whichever is larger)	24 ± 2 h at *room condition, then measure.
		Q	$30pF \leq C : Q \geq 350$	
		[·	$10pF \le C < 30pF : Q \ge 275+5C/2$	Step 1 2
			$10pF \ge C \le 30pF : C \ge 270+3072$ $10pF > C : Q \ge 200+10C$	Temp. 55+0/2 125+2/0
				(°C) -55+0/-3 125+3/-0
			C - Neminal Canaditar (-5)	Time
			C : Nominal Capacitance (pF)	(min.) 15±3 15±3
		I.R.	1,000MΩ or 50MΩ • μF min.	(1111.7
			(Whichever is smaller)	

٦

	Test	Item		Specification		Test Meth	od (Compliant St	andard:AEC-Q2	00)	
15	ESD	Appearance	No defects	or abnormalities.	Per AEC-Q20					
	-	Capacitance	Within the s	specified tolerance.						
		Q	30pF ≦ C :		1					
		-	$30pF > C : Q \ge 400+20C$							
			00p 0 .							
			C : Nominal Capacitance (pF) More than 10,000MΩ or 500 MΩ • μF							
					-					
		I.R.								
			(Whichever is smaller)		Should be placed into steam aging for 8h±15 min.					
16	Solderability		Lead wire should be soldered with uniform		-					
			-	coating on the axial direction over 95% of the circumferential direction.		The terminal of capacitor is dipped into a solution of rosin ethanol (25% rosin in weight propotion).				
			the circumfe							
					Immerse in solder solution for 2±0.5 seconds.					
					In both cases the depth of dipping is up to about 1.5 to 2mm from the terminal body.					
					Temp. of solo	der : 245±5°	C (Sn-3.0Ag-0.5	iCu)		
17	Electrical	Apperance	No defects or abnormalities.		Visual inspec	tion.				
	Characte-	Capacitance	Within the specified tolerance. $30pF \leq C : Q \geq 1,000$		The capacita	nce, Q shou	ld be measured	at 25°C at the fre	equency	
	rization	Q			and voltage s	hown in the	table.			
				30pF > C : Q ≧ 400+20C						
				-		ninal Cap.	Frequency	Voltage		
ļ						1000pF	1±0.1MHz	AC0.5 to 5V(r	r.m.s.)	
ļ				Canacitanco (nE)	C >	1000pF	1±0.1kHz	AC1±0.2V(r.	m.s.)	
ļ		1 D		I Capacitance (pF)	The ineuter'	o rociet		urod with - DC	oltoro	
		I.R.	Between	10,000M Ω or 500M $\Omega \cdot \mu$ F min.			should be meas		U U	
		D		(Whichever is smaller)		-	voltage at 25 °C v			
		Dielectric	Between No defects or abnormalities. Terminals	No defects or abnormalities.	-		be damaged wh	-		
		Strength		of the rated voltage is applied between the terminations for 1 to 5						
		To Exte				seconds.				
						harge curre	nt ≦ 50mA.)			
				No defects or abnormalities.	The capacito	r is placed i	n a container with	n metal balls of 1	lmm	
			-		diameter so that each terminal, short-circuit is kept approximately					
			External Resin	2mm from the balls, and 250% of the rated DC voltage is impressed for 1 to 5 seconds between capacitor terminals and metal balls.						
					(Charge/Discharge current ≦ 50mA.)					
18	Terminal	Tensile	Terminatior	not to be broken or loosened.	As in the figure, fix the capacitor body, apply the force gradually					
	Strength	Strength			to each lead in the radial direction of the capacitor until reaching					
	g				10N and then keep the force applied for 10±1 seconds.					
						•		021 000011001		
					<u> </u>					
					↓					
					↓ F 】					
		Dandin -	Tormination	pot to be broken or lessensed	F 2	e ekerdet			l th an	
		Bending	Terminatior	n not to be broken or loosened.			e subjected to a f			
		Bending Strength	Terminatior	not to be broken or loosened.	be bent 90° a	it the point o	of egress in one of	direction. Each w	vire is	
		-	Terminatior) not to be broken or loosened.	be bent 90° a then returned	It the point of I to the origi	of egress in one on nal position and l	direction. Each w bent 90° in the o	vire is	
	0 "	-			be bent 90° a then returned direction at th	it the point o I to the origi he rate of or	of egress in one of nal position and l e bend per 2 to 3	direction. Each w bent 90° in the o 3 seconds.	rire is pposite	
19	Capacitance	-	Within the s	specified Tolerance	be bent 90° a then returned direction at th The capacita	It the point of I to the origine rate of or nce change	of egress in one of nal position and l le bend per 2 to 3 should be meas	direction. Each w bent 90° in the o 3 seconds.	rire is pposite	
19	Temperature	Strength	Within the s 25°C to 125	specified Tolerance °C : 0±30ppm/°C	be bent 90° a then returned direction at th	It the point of I to the origine rate of or nce change	of egress in one of nal position and l le bend per 2 to 3 should be meas	direction. Each w bent 90° in the o 3 seconds.	rire is pposite	
19	-	Strength	Within the s 25°C to 125	specified Tolerance	be bent 90° a then returned direction at th The capacita	It the point of I to the origine rate of or nce change	of egress in one of nal position and l e bend per 2 to 3 should be meas ure step.	direction. Each w bent 90° in the o 3 seconds. ured after 5min.	rire is pposite	
19	Temperature	Strength	Within the s 25°C to 125	specified Tolerance °C : 0±30ppm/°C	be bent 90° a then returned direction at th The capacita	It the point of to the origine rate of or nce change d temperation	of egress in one of nal position and l e bend per 2 to 3 should be meas ure step.	direction. Each w bent 90° in the o 3 seconds. ured after 5min. ture(°C)	rire is pposite	
19	Temperature	Strength	Within the s 25°C to 125	specified Tolerance °C : 0±30ppm/°C	be bent 90° a then returned direction at th The capacita	t the point of t to the origine rate of or nce change d temperatu	of egress in one of nal position and l e bend per 2 to 3 should be meas ure step. Tempera	direction. Each w bent 90° in the o 3 seconds. ured after 5min. ture(°C) ±2	rire is pposite	
19	Temperature	Strength	Within the s 25°C to 125	specified Tolerance °C : 0±30ppm/°C	be bent 90° a then returned direction at th The capacita	t the point of I to the origine rate of or nice change d temperate Step 1 2	of egress in one of nal position and l e bend per 2 to 3 should be meas ure step. Tempera 25: -55	direction. Each w bent 90° in the o 3 seconds. ured after 5min. ture(°C) ± 2 ± 3	rire is pposite	
19	Temperature	Strength	Within the s 25°C to 125	specified Tolerance °C : 0±30ppm/°C	be bent 90° a then returned direction at th The capacita	t the point of t to the origine rate of or noce change d temperature Step 1 2 3	of egress in one of nal position and l e bend per 2 to 3 should be meas ure step. Tempera 25: -55 25:	direction. Each w bent 90° in the o 3 seconds. ured after 5min. ture(°C) ± 2 ± 3 ± 2	rire is pposite	
19	Temperature	Strength	Within the s 25°C to 125	specified Tolerance °C : 0±30ppm/°C	be bent 90° a then returned direction at th The capacita	t the point of I to the origine rate of or note change d temperature Step 1 2 3 4	of egress in one of nal position and l e bend per 2 to 3 should be meas ure step. Tempera 25: 25: 25:	direction. Each w bent 90° in the o 3 seconds. ured after 5min. ture(°C) ± 2 ± 3 ± 2 ± 3	rire is pposite	
19	Temperature	Strength	Within the s 25°C to 125	specified Tolerance °C : 0±30ppm/°C	be bent 90° a then returned direction at th The capacita	t the point of t to the origine rate of or noce change d temperature Step 1 2 3	of egress in one of nal position and l e bend per 2 to 3 should be meas ure step. Tempera 25: -55 25:	direction. Each w bent 90° in the o 3 seconds. ured after 5min. ture(°C) ± 2 ± 3 ± 2 ± 3	rire is pposite	
19	Temperature	Strength	Within the s 25°C to 125	specified Tolerance °C : 0±30ppm/°C	be bent 90° a then returned direction at th The capacita each specifie	t the point of t to the origine rate of or noce change d temperature 1 2 3 4 5	re step. Tempera 25: 25: 25: 25: 25: 25: 25: 25:	direction. Each w bent 90° in the o 3 seconds. ured after 5min. ture(°C) ± 2 ± 3 ± 2 ± 3 ± 2 ± 2	vire is pposite at	
19	Temperature	Strength	Within the s 25°C to 125	specified Tolerance °C : 0±30ppm/°C	be bent 90° a then returned direction at th The capacita each specifie The temperat	t the point of t to the origine rate of or noce change d temperature Step 1 2 3 4 5 ture coeffici	of egress in one of nal position and l e bend per 2 to 3 should be measure step. Tempera 25: 25: 25: 25: 25: 25: 25: 25: 25: 25:	direction. Each w bent 90° in the o 3 seconds. ured after 5min. ture(°C) ±2 ±3 ±2 ±3 ±2 ±2 using the capaci	vire is pposite at	
19	Temperature	Strength	Within the s 25°C to 125	specified Tolerance °C : 0±30ppm/°C	be bent 90° a then returned direction at th The capacita each specifie The temperal measured in	t the point of I to the origine rate of or note change d temperature Step 1 2 3 4 5 ture coeffici step 3 as a	of egress in one of nal position and l e bend per 2 to 3 should be measure step. Tempera 25: 25: 25: 25: 25: 25: 25: 25: 25: 25:	direction. Each w bent 90° in the o 3 seconds. ured after 5min. ture(°C) ±2 ±3 ±2 ±3 ±2 ±3 ±2 using the capaci o cycling the temp	vire is pposite at	
19	Temperature	Strength	Within the s 25°C to 125	specified Tolerance °C : 0±30ppm/°C	be bent 90° a then returned direction at th The capacita each specifie The temperat measured in sequentially f	t the point of t to the origine rate of or note change d temperature	of egress in one of nal position and l e bend per 2 to 3 should be measure step. Tempera 25: 25: 25: 25: 25: 25: 25: 25: 25: 25:	direction. Each w bent 90° in the o 3 seconds. ured after 5min. ture(°C) ± 2 ± 3 ± 5 ± 2 ± 3 ± 4 ± 3 ± 5 ± 5	vire is pposite at tance perature	
19	Temperature	Strength	Within the s 25°C to 125	specified Tolerance °C : 0±30ppm/°C	be bent 90° a then returned direction at the The capacita each specifies The temperat measured in sequentially f the capacitar	the point of the rate of or nee change d temperature	of egress in one of nal position and l e bend per 2 to 3 should be measure step. Tempera 25: 25: 125 25: 25: 125 25: ent is determind reference. When through 5 (-55°C	direction. Each w bent 90° in the o 3 seconds. ured after 5min. ture(°C) ± 2 ± 3 ± 2 ± 3 ± 2 ± 3 ± 2 using the capaci to cycling the temp to 125°C) cified tolerance for	vire is pposite at tance perature or the	
19	Temperature	Strength	Within the s 25°C to 125	specified Tolerance °C : 0±30ppm/°C	be bent 90° a then returned direction at the The capacita each specifies The temperation measured in sequentially f the capacitan temperature of	the point of the rate of or nee change d temperature	of egress in one of nal position and l e bend per 2 to 3 should be measure step. Tempera 255 255 255 255 255 255 255 255 255 25	direction. Each w bent 90° in the o 3 seconds. ured after 5min. ture(°C) ±2 ±3 ±2 ±2 ±3 ±2 using the capaci to 125°C) cified tolerance for change as Table	tance perature A.	
19	Temperature	Strength	Within the s 25°C to 125	specified Tolerance °C : 0±30ppm/°C	be bent 90° a then returned direction at the The capacita each specifies The temperation sequentially f the capacitan temperature of The capacita	the point of the rate of or nee change d temperature	of egress in one of nal position and l e bend per 2 to 3 should be measure step. Tempera 25: 25: 25: 25: 25: 25: 25: 25: 25: 25:	direction. Each w bent 90° in the o 3 seconds. ured after 5min. ture(°C) ±2 ±3 ±2 ±3 ±2 using the capaci to 125°C) cified tolerance for change as Table viding the different	tance perature or the A. nces	
19	Temperature	Strength	Within the s 25°C to 125	specified Tolerance °C : 0±30ppm/°C	be bent 90° a then returned direction at the The capacita each specifies The temperation sequentially fi the capacitan temperature of The capacitan betweeen the	the point of the rate of or nee change d temperature	of egress in one of nal position and l e bend per 2 to 3 should be measure step. Tempera 255 255 255 255 255 255 255 255 255 25	direction. Each w bent 90° in the o 3 seconds. ured after 5min. ture(°C) ±2 ±3 ±2 ±3 ±2 using the capaci o cycling the temp to 125°C) cified tolerance for change as Table viding the difference easured values i	tance perature or the A. nces	

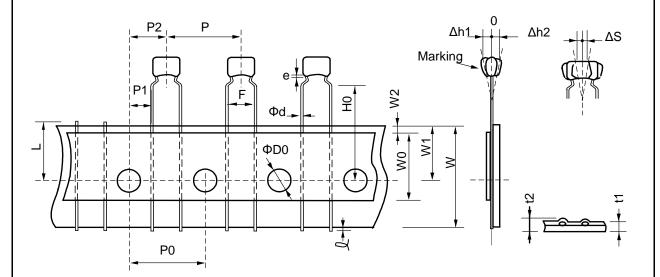
ľ



7. Taping specification

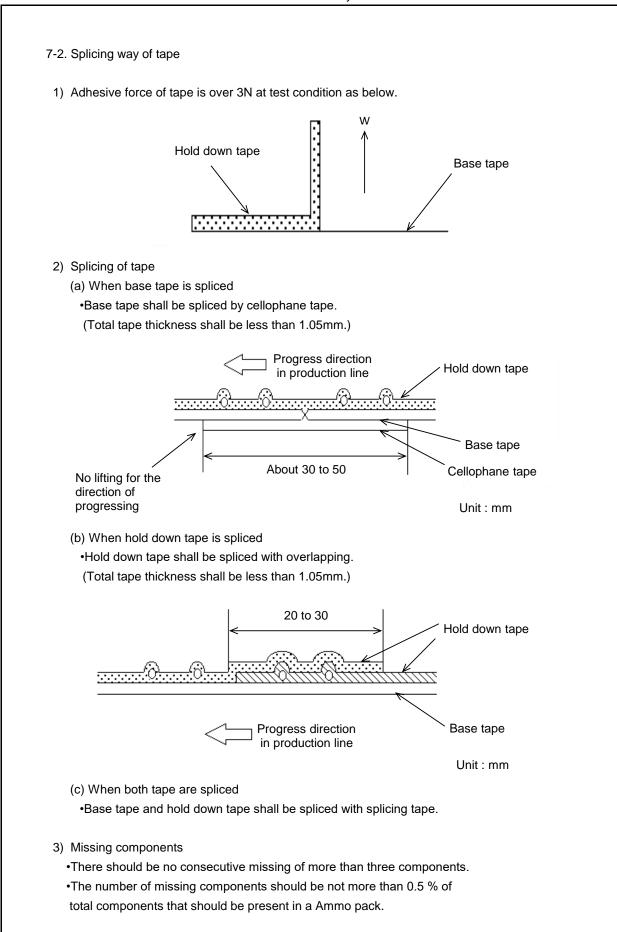
7-1. Dimension of capacitors on tape Straight taping type < Lead Style : DB >

Pitch of component 12.7mm / Lead spacing 2.5mm



Unit : mm

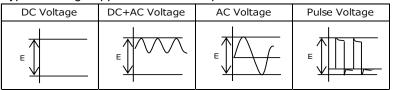
Item	Code	Dimensions	Remarks	
	P	12.7+/-1.0	Remarks	
Pitch of component	•			
Pitch of sprocket hole	P0	12.7+/-0.2		
Lead spacing	F	2.5+0.4/-0.2		
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction	
Length from hole center to lead	P1	5.1+/-0.7	1	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead ben	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
Lead distance between reference and bottom plane	н	16.0+/-0.5		
Protrusion length	l	0.5 max.		
Diameter of sprocket hole	ΦD0	4.0+/-0.1		
Lead diameter	Φd	0.5+/-0.05		
Total tape thickness	t1	0.6+/-0.3	They include hold down tape thickness	
Total thickness of tape and lead wire	t2	1.5 max.		
Deviation correct tone	∆h1	1.0 max.		
Deviation across tape	∆h2	1.0 max.		
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width	W0	9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead	е	1.5 max.		


ETP1DB02A

Inside crimp taping type < Lead Style : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm

Unit : mm

Item	Code	Dimensions	Remarks	
Pitch of component	Р	12.7+/-1.0		
Pitch of sprocket hole	P0	12.7+/-0.2		
Lead spacing	F	5.0+0.6/-0.2		
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction	
Length from hole center to lead	P1	3.85+/-0.7		
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
Lead distance between reference and bottom plane	H0	16.0+/-0.5		
Protrusion length	l	0.5 max.		
Diameter of sprocket hole	ΦD0	4.0+/-0.1		
Lead diameter	Φd	0.5+/-0.05		
Total tape thickness	t1	0.6+/-0.3	They include hold down tape thickness	
Total thickness of tape and lead wire	t2	1.5 max.		
Deviation corose tone	∆h1	2.0 max. (Dimension code : W)		
Deviation across tape	∆h2	1.0 max. (except as above)		
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width	W0	9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead	е	Up to the end of	crimp	



1. OPERATING VOLTAGE

Do not apply a voltage to the capacitor that exceeds the rated voltage as called out in the specifications.

- 1-1. Applied voltage between the terminals of a capacitor shall be less than or equal to the rated voltage.
- (1) When AC voltage is superimposed on DC voltage, the zero-to-peak voltage shall not exceed the rated DC voltage. When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage.
- (2) Abnormal voltages (surge voltage, static electricity, pulse voltage, etc.) shall not exceed the rated DC voltage.

Typical Voltage Applied to the DC Capacitor

(E: Maximum possible applied voltage.)

1-2. Influence of over voltage

Over voltage that is applied to the capacitor may result in an electrical short circuit caused by the breakdown of the internal dielectric layers. The time duration until breakdown depends on the applied voltage and the ambient temperature.

Use a safety standard certified capacitor in a power supply input circuit (AC filter), as it is also necessary to consider the withstand voltage and impulse withstand voltage defined for each device.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the selfgenerated heat due to dielectric-loss.

In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C.

Since the self-heating is low in the Class 1 capacitors (Temp.Char.: C0G,U2J,X8G, etc.), the allowable power becomes extremely high compared to the Class 2 capacitors.

However, when a load with self-heating of 20°C is applied at the rated voltage, the allowable power may be exceeded. Please confirm that there is no rising trend of the capacitor's surface temperature and that the surface temperature of the capacitor does not exceed the maximum operating temperature.

Excessive generation of heat may cause deterioration of the characteristics and reliability of the capacitor.

When measuring the self-heating temperature, be aware that accurate measurement may not be possible due to the following effects.

- The heat generated by other parts
- Air flow such as convection and cooling fans
- Temperature sensor used for measuring surface temperature of capacitor In the case using a thermocouple, it is recommended that use a K thermocouple of Φ0.1mm with less heat capacity.

3. FAIL-SAFE

Capacitors that are cracked by dropping or bending of the board may cause deterioration of the insulation resistance, and result in a short.

If the circuit being used may cause an electrical shock, smoke or fire when a capacitor is shorted, be sure to install fail-safe functions, such as a fuse, to prevent secondary accidents.

4. OPERATING AND STORAGE ENVIRONMENT

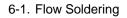
The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months. Use capacitors within 6 months after delivered. Check the solderability after 6 months or more. Due to moisture condensation caused by rapid humidity changes, or the photochemical change caused by direct sunlight on the terminal electrodes, the solderability and electrical performance may deteriorate. Do not store capacitors under direct sunlight or in high humidity conditions.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

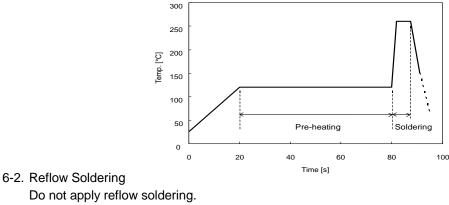
5-1. Mechanical shock due to being dropped may cause damage or a crack in the dielectric material of the capacitor.

Do not use a dropped capacitor because the quality and reliability may be deteriorated.


5-2. Excessive shock or vibration may cause to fatigue destruction of lead wires mounted on the circuit board. If necessary, take measures to hold a capacitor on the circuit boards by adhesive, molding resin or coating and other.

Please confirm there is no influence of holding measures on the product with an intended equipment.

6. SOLDERING


When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

Please verify that the soldering process does not affect the quality of capacitors.

Soldering temperature Soldering time Preheating temperature Preheating time : 260 °C max. : 7.5 s max. : 120 °C max. : 60 s max.

[Standard Condition for Flow Soldering]

Do not apply reflow soldering. 6-3. Soldering Iron

8	
Temperature of iron-tip	: 350 °C max.
Soldering iron wattage	: 60 W max.
Soldering time	: 3.5 s max.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

The products listed in the specification(hereinafter the product(s) is called as the "Product(s)") are designed and manufactured for applications specified in the specification. (hereinafter called as the "Specific Application")

We shall not warrant anything in connection with the Products including fitness, performance, adequateness, safety, or quality, in the case of applications listed in from (1) to (11) written at the end of this precautions, which may generally require high performance, function, quality, management of production or safety.

Therefore, the Product shall be applied in compliance with the specific application.

WE DISCLAIM ANY LOSS AND DAMAGES ARISING FROM OR IN CONNECTION WITH THE PRODUCTS INCLUDING BUT NOT LIMITED TO THE CASE SUCH LOSS AND DAMAGES CAUSED BY THE UNEXPECTED ACCIDENT, IN EVENT THAT (i) THE PRODUCT IS APPLIED FOR THE PURPOSE WHICH IS NOT SPECIFIED AS THE SPECIFIC APPLICATION FOR THE PRODUCT, AND/OR (ii) THE PRODUCT IS APPLIED FOR ANY FOLLOWING APPLICATION PURPOSES FROM (1) TO (11) (EXCEPT THAT SUCH APPLICATION PURPOSE IS UNAMBIGUOUSLY SPECIFIED AS SPECIFIC APPLICATION FOR THE PRODUCT IN THE SPECIFICATION.*)

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment
- 7. Traffic control equipment
- 8. Disaster prevention/security equipment
- 9. Industrial data-processing equipment
- 10. Combustion/explosion control equipment
- 11. Equipment with complexity and/or required reliability equivalent to the applications listed in the above.

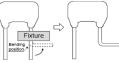
For exploring information of the Products which will be compatible with the particular purpose other than those specified in the specification, please contact our sales offices, distribution agents, or trading companies with which you make a deal, or via our web contact form.

Contact form: https://www.murata.com/contactform

*We may design and manufacture particular Products for applications listed in (1) to (11). Provided that, in such case we shall unambiguously specify such Specific Application in the specification without any exception.

Therefore, any other documents and/or performances, whether exist or non-exist, shall not be deemed as the evidence to imply that we accept the applications listed in (1) to (11).

NOTICE


1. CLEANING

- 1-1. Please evaluate the capacitor using actual cleaning equipment and conditions to confirm the quality, and select the solvent for cleaning.
- 1-2. Unsuitable cleaning may leave residual flux or other foreign substances, causing deterioration of electrical characteristics and the reliability of the capacitors.
- 1-3. To perform ultrasonic cleaning, observe the following conditions.
 Rinse bath capacity : Output of 20 watts per liter or less.
 Rinsing time : 5 min maximum.
 Do not vibrate the PCB/PWB directly.
 Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. SOLDERING AND MOUNTING

- 2-1. Insert the lead wire into the PCB with a distance appropriate to the lead space. If the lead wires are inserted into different spacing holes, cracks may occur in the outer resin or the internal element.
- 2-2. When bending the lead wire, excessive force applied to the capacitor body may cause cracks in the outer resin or the internal element. Hold the lead wire closer to the capacitor body than the lead wire bending position with the fixture, then bend it.

(See the right figure)

- 2-3. When cutting and clinching the lead wire, do not apply excessive force to the capacitor body.
- 2-4. When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.

3. CAPACITANCE CHANGE OF CAPACITORS

Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

4. CHARACTERISTICS EVALUATION IN THE ACTUAL SYSTEM

- 4-1. Evaluate the capacitor in the actual system, to confirm that there is no problem with the performance and specification values in a finished product before using.
- 4-2. Since a voltage dependency and temperature dependency exists in the capacitance of Class 2 ceramic capacitors, the capacitance may change depending on the operating conditions in the actual system. Therefore, be sure to evaluate the various characteristics, such as the leakage current and noise absorptivity, which will affect the capacitance value of the capacitor.
- 4-3. In addition, voltages exceeding the predetermined surge may be applied to the capacitor by the inductance in the actual system.

Evaluate the surge resistance in the actual system as required.

4-4. When using Class 2 ceramic capacitors in AC or pulse circuits, the capacitor itself vibrates at specific frequencies and noise may be generated. Moreover, when the mechanical vibration or shock is added to capacitor, noise may occur.

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this product specification.